Cancer and Metastasis Reviews

, 25:435

Transforming growth factor-β in cancer and metastasis



Transforming growth factor-beta (TGF-β) is a multifunctional regulatory polypeptide that is the prototypical member of a large family of cytokines that controls many aspects of cellular function, including cellular proliferation, differentiation, migration, apoptosis, adhesion, angiogenesis, immune surveillance, and survival. The actions of TGF-β are dependent on several factors including cell type, growth conditions, and the presence of other polypeptide growth factors. One of the biological effects of TGF-β is the inhibition of proliferation of most normal epithelial cells using an autocrine mechanism of action, and this suggests a tumor suppressor role for TGF-β. Loss of autocrine TGF-β activity and/or responsiveness to exogenous TGF-β appears to provide some epithelial cells with a growth advantage leading to malignant progression. This suggests a pro-oncogenic role for TGF-β in addition to its tumor suppressor role. During the early phase of epithelial tumorigenesis, TGF-β inhibits primary tumor development and growth by inducing cell cycle arrest and apoptosis. In late stages of tumor progression when tumor cells become resistant to growth inhibition by TGF-β due to inactivation of the TGF-β signaling pathway or aberrant regulation of the cell cycle, the role of TGF-β becomes one of tumor promotion. Resistance to TGF-β-mediated inhibition of proliferation is frequently observed in multiple human cancers, as are various alterations in the complex TGF-β signaling and cell cycle pathways. TGF-β can exert effects on tumor and stromal cells as well as alter the responsiveness of tumor cells to TGF-β to stimulate invasion, angiogenesis, and metastasis, and to inhibit immune surveillance. Because of the dual role of TGF-β as a tumor suppressor and pro-oncogenic factor, members of the TGF-β signaling pathway are being considered as predictive biomarkers for progressive tumorigenesis, as well as molecular targets for prevention and treatment of cancer and metastasis.


TGF-β Tumor suppressor Pro-oncogene Proliferation Invasion 


  1. 1.
    Abe, T., Ouyang, H., Migita, T., Kato, Y., Kimura, M., Shiiba, K., et al. (1996). The somatic mutation frequency of the transforming growth factor β receptor type II gene varies widely among different cancers with microsatellite instability. European Journal of Surgical Oncology, 22, 474–477.PubMedCrossRefGoogle Scholar
  2. 2.
    Albright, C. D., Salganik, R. I., Craciunescu, C. N., Mar, M. H., & Zeisel, S. H. (2003). Mitochondrial and microsomal derived reactive oxygen species mediate apoptosis induced by transforming growth factor β1 in immortalized rat hepatocytes. Journal of Cellular Biochemistry, 89, 254–261.PubMedCrossRefGoogle Scholar
  3. 3.
    Amendt, C., Schirmacher, P., Weber, H., & Blessing, M. (1998). Expression of a dominant negative type II TGF-β receptor in mouse skin results in an increase in carcinoma incidence and an acceleration of carcinoma development. Oncogene, 17, 25–34.PubMedCrossRefGoogle Scholar
  4. 4.
    Amoroso, S. R., Huang, N., Roberts, A. B., Potter, M., & Letterio, J. J. (1998). Consistent loss of functional transforming growth factor β receptor expression in murine plasmacytomas. Proceedings of the National Academy of Sciences of the United States of America, 95, 189–194.PubMedCrossRefGoogle Scholar
  5. 5.
    Arrick, B. A., Lopez, A. R., Elfman, F., Ebner, R., Damsky, C. H., & Derynck, R. (1992). Altered metabolic and adhesive properties and increased tumorigenesis associated with increased expression of transforming growth factor β1. Journal of Cell Biology, 118, 715–726.PubMedCrossRefGoogle Scholar
  6. 6.
    Arteaga, C. L., Carty-Dugger, T., Moses, H. L., Hurd, S. D., & Pietenpol, J. A. (1993). Transforming growth factor β1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. Cell Growth & Differentiation, 4, 193–201.Google Scholar
  7. 7.
    Arteaga, C. L., Coffey, R. J. Jr., Dugger, T. C., McCutchen, C. M., Moses, H. L., & Lyons, R. M. (1990). Growth stimulation of human breast cancer cells with anti-transforming growth factor β antibodies: Evidence for autocrine negative regulation by transforming growth factor β. Cell Growth & Differentiation, 1, 367–374.Google Scholar
  8. 8.
    Arteaga, C. L., Hurd, S. D., Winnier, A. R., Johnson, M. D., Fendly, B. M., & Forbes, J. T. (1993). Anti-transforming growth factor (TGF)-β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF-β interactions in human breast cancer progression. Journal of Clinical Investigation, 92, 2569–2576.PubMedGoogle Scholar
  9. 9.
    Bandyopadhyay, A., Lopez-Casillas, F., Malik, S. N., Montiel, J. L., Mendoza, V., Yang, J., et al. (2002). Antitumor activity of a recombinant soluble betaglycan in human breast cancer xenograft. Cancer Research, 62, 4690–4695.PubMedGoogle Scholar
  10. 10.
    Bandyopadhyay, A., Wang, L., Lopez-Casillas, F., Mendoza, V., Yeh, I. T., & Sun, L. Z. (2005). Systemic administration of a soluble recombinant betaglycan suppressed tumor growth, angiogenesis, and matrix metalloproteinase expression in a human xenograft model of prostate cancer. Prostate, 63, 81–90.PubMedCrossRefGoogle Scholar
  11. 11.
    Bandyopadhyay, A., Zhu, Y., Cibull, M. L., Bao, L. W., Chen, C. G., & Sun, L. Z. (1999). A soluble transforming growth factor β type III receptor suppresses tumorigenicity and metastasis of human breast cancer MDA-MB-231 cells. Cancer Research, 59, 5041–5046.PubMedGoogle Scholar
  12. 12.
    Bandyopadhyay, A., Zhu, Y., Malik, S. N., Kreisberg, J., Brattain, M. G., Sprague, E. A., et al. (2002). Extracellular domain of TGF-β type III receptor inhibits angiogenesis and tumor growth in human cancer cells. Oncogene, 21, 3541–3551.PubMedCrossRefGoogle Scholar
  13. 13.
    Barcellos-Hoff, M. H. (2005). Integrative radiation carcinogenesis: Interactions between cell and tissue responses to DNA damage. Seminars in Cancer Biology, 15, 138–148.PubMedCrossRefGoogle Scholar
  14. 14.
    Barrios-Rodiles, M., Brown, K. R., Ozdamar, B., Bose, R., Liu, Z., Donovan, R. S., et al. (2005). High-throughput mapping of a dynamic signaling network in mammalian cells. Science, 307, 1621–1625.PubMedCrossRefGoogle Scholar
  15. 15.
    Betticher, D. C., Heighway, J., Haselton, P. S., Altermatt, J. H., Ryder, W. D. J., Cerny, T., et al. (1996). Prognostic significance of CCND1 (cyclin D1) overexpression in primary resected non-small cell lung cancer. British Journal of Cancer, 73, 294–300.PubMedGoogle Scholar
  16. 16.
    Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., et al. (2004). TGF-β signaling in fibroblasts modulates the oncogenic potential of adjacent epithelia. Science, 303, 775–777.CrossRefGoogle Scholar
  17. 17.
    Biglari, A., Bataille, D., Naumann, U., Weller, M., Zirger, J., Castro, M. G., et al. (2004). Effects of ectopic decorin in modulating intracranial glioma progression in vivo, in a rat syngeneic model. Cancer Gene Therapy, 11, 721–732.PubMedCrossRefGoogle Scholar
  18. 18.
    Böttinger, E. P., Jakubczak, J. L., Haines, D. C., Bagnall, K., & Wakefield, L. M. (1997). Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor β receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Research, 57, 5564–5570.PubMedGoogle Scholar
  19. 19.
    Boyer Arnold, N., & Korc, M. (2005). Smad7 abrogates transforming growth factor-β1-mediated growth inhibition in COLO-357 cells through functional inactivation of the retinoblastoma protein. Journal of Biological Chemistry, 280, 21858–21866.PubMedCrossRefGoogle Scholar
  20. 20.
    Bretland, A. J., Reid, S. V., Chapple, C. R., & Eaton, C. I. (2001). Role of endogenous transforming growth factor β (TGFβ)1 in prostatic stromal cells. Prostate, 48, 297–304.CrossRefGoogle Scholar
  21. 21.
    Bubb, V. J., Curtis, L. J., Cunningham, C., Dunlop, M. G., Carothers, A. D., Morris, R. G., et al. (1996). Microsatellite instability and the role of hMSH2 in sporadic colorectal cancer. Oncogene, 12, 2641–2649.PubMedGoogle Scholar
  22. 22.
    Callahan, J. F., Burgess, J. L., Fornwald, J. A., Gaster, L. M., Harling, J. D., Harrington, F. P., et al. (2002). Identification of novel inhibitors of the transforming growth factor β1 (TGF-β1) type 1 receptor (ALK5). Journal of Medicinal Chemistry, 45, 999–1001.PubMedCrossRefGoogle Scholar
  23. 23.
    Chen, R. H., Ebner, R., & Derynck, R. (1993). Inactivation of the type II receptor reveals two receptor pathways for the diverse TGF-β activities. Science, 260, 1135–1338.CrossRefGoogle Scholar
  24. 24.
    Chen, T., Carter, D., Garrigue-Antar, L., & Reiss, M. (1998). Transforming growth factor β type I receptor kinase mutant associated with metastatic breast cancer. Cancer Research, 58, 4805–4810.PubMedGoogle Scholar
  25. 25.
    Chen, T., Triplett, T., Dehner, B., Hurst, B., Colligan, B., Pemberton, J., et al. (2001). Transforming growth factor-β receptor type I gene is frequently mutated in ovarian carcinomas. Cancer Research, 61, 4679–4682.PubMedGoogle Scholar
  26. 26.
    Chen, T., Yan, W., Wells, R. G., Rimm, D. L., McNiff, J., Leffell, D., et al. (2001). Novel inactivating mutations of transforming growth factor-β type I receptor gene in head-and-neck cancer metastases. International Journal of Cancer, 93, 653–661.CrossRefGoogle Scholar
  27. 27.
    Chen, W. B., Lenschow, W., Tiede, K., Fischer, J. W., Kalthoff, H., & Ungefroren, H. (2002). Smad4/DPC4-dependent regulation of biglycan gene expression by transforming growth factor-β in pancreatic tumor cells. Journal of Biological Chemistry, 277, 36118–38128.PubMedCrossRefGoogle Scholar
  28. 28.
    Cheng, N., Bhowmick, N. A., Chytil, A., Gorska, A. E., Brown, K. A., Muraoka, R., et al. (2005). Loss of TGF-β type II receptor in fibroblasts promotes mammary carcinoma growth and invasion through upregulation of TGF-α-, MSP- and HGF-mediated signaling networks. Oncogene, 24, 5053–5068.PubMedCrossRefGoogle Scholar
  29. 29.
    Chung, Y. J., Song, J. M., Lee, J. Y., Jung, Y. T., Seo, E. J., Choi, S. W., et al. (1996). Microsatellite instability-associated mutations associate preferentially with the intestinal type of primary gastric carcinomas in a high-risk population. Cancer Research, 56, 4662–4665.PubMedGoogle Scholar
  30. 30.
    Cohen, P., Nunn, S. E., & Peehl, D. M. (2000). Transforming growth factor-β induces growth inhibition and IGF-binding protein-3 production in prostatic stromal cells: Abnormalities in cells cultured from benign prostatic hyperplasia tissues. Journal of Endocrinology, 164, 215–223.PubMedCrossRefGoogle Scholar
  31. 31.
    Cui, W., Fowlis, D. J., Bryson, S., Duffie, E., Ireland, H., Balmain, A., et al. (1996). TGFβ1 inhibits the formation of benign skin tumors but enhances progression to invasive spindle cell carcinomas in transgenic mice. Cell, 86, 531–542.PubMedCrossRefGoogle Scholar
  32. 32.
    Cui, Q., Lim, S. K., Zhao, B., & Hoffmann, F. M. (2005). Selective inhibition of TGF-β responsive genes by Smad-interacting peptide aptamers from FoxH1, Lef1 and CBP. Oncogene, 24, 3864–3874.PubMedCrossRefGoogle Scholar
  33. 33.
    Da Costa Byfield, S., Major, C., Laping, N. J., & Roberts, A. B. (2004). SB-505124 is a selective inhibitor of transforming growth factor-β type I receptors ALK4, ALK5, and ALK7. Molecular Pharmacology, 65, 744–752.CrossRefGoogle Scholar
  34. 34.
    Dalal, B. I., Keown, P. A., & Greenberg, A. H. (1993). Immunocytochemical localization of secreted transforming growth factor-β1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. American Journal of Pathology, 143, 381–389.PubMedGoogle Scholar
  35. 35.
    Datto, M. B., Frederick, J. P., Pan, L., Borton, A. J., Zhuang, Y., & Wang, X.-F. (1999). Targeted disruption of Smad3 reveals an essential role in transforming growth factor β-mediated signal transduction. Molecular and Cellular Biology, 19, 2495–2504.PubMedGoogle Scholar
  36. 36.
    Diswas, S., Chytil, A., Washington, K., Romero-Gallo, J., Gorska, A. E., Wirth, P. S., et al. (2004). Transforming growth factor β receptor type II inactivation promotes the establishment and progression of colon cancer. Cancer Research, 64, 4687–4692.CrossRefGoogle Scholar
  37. 37.
    Edlund, S., Bu, S., Schuster, N., Aspenstrom, P., Heuchel, R., Heldin, N.-E., et al. (2003). Transforming growth factor β1-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-β-activated kinase 1 and mitogen-activated protein kinase kinase 3. Molecular Biology of the Cell, 14, 529–544.PubMedCrossRefGoogle Scholar
  38. 38.
    Edlund, S., Landstrom, M., Heldin, C. H., & Aspenstrom, P. (2004). Smad7 is required for TGF-β-induced activation of the small GTPase Cdc42. Journal of Cell Science, 117, 1835–1847.PubMedCrossRefGoogle Scholar
  39. 39.
    Eisma, R. J., Spiro, J. D., von Bilberstein, S. E., Lindquist, R., & Kreutzer, D. L. (1996). Decreased expression of transforming growth factor β receptors on head and neck tumor cells. American Journal of Surgery, 172, 641–645.PubMedCrossRefGoogle Scholar
  40. 40.
    Erickson, A. C., & Barcellos-Hoff, M. H. (2003). The not-so innocent bystander: The microenvironment as a therapeutic target in cancer. Expert Opinion on Therapeutic Targets, 7, 71–88.PubMedCrossRefGoogle Scholar
  41. 41.
    Ewan, K. B., Oketch-Rabah, H. A., Ravani, S. A., Shyamala, G., Moses, H. L., & Barcellos-Hoff, M. H. (2005). Proliferation of estrogen receptor-α-positive mammary epithelial cells is restained by transforming growth factor β1 in adult mice. American Journal of Pathology, 167, 409–417.PubMedGoogle Scholar
  42. 42.
    Eyes, P. A., Craxton, M., Morrice, N., Cihen, P., & Goedert, M. (1998). Conversion of SB-203580-insensitive MAP kinase family members to drug sensitive forms by a single amino acid substitution. Chemistry & Biology, 5, 321–328.CrossRefGoogle Scholar
  43. 43.
    Fafeur, V., O'Hara, B., & Böhlen, P. (1993). A glycosylation-deficient endothelial cell mutant with modified responses to transforming growth factor-β and other growth inhibitory cytokines: Evidence for multiple growth inhibitory signal transduction pathways. Molecular Biology of the Cell, 4, 135–144.PubMedGoogle Scholar
  44. 44.
    Fakhrai, H., Dorigo, O., Shawler, D. L., Lin, H., Mercola, D., Black, K. L., et al. (1996). Eradication of established intracranial rat gliomas by transforming growth factor β antisense gene therapy. Proceedings of the National Academy of Sciences of the United States of America, 93, 2909–2914.PubMedCrossRefGoogle Scholar
  45. 45.
    Feng, X., Lin, X., & Derynck, R. (2000). Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-β. EMBO Journal, 19, 5178–5193.PubMedCrossRefGoogle Scholar
  46. 46.
    Flanders, K. C., Major, C. D., Arabshahi, A., Aburime, E. E., Okada, M. H., Fujii, M., et al. (2003). Interference with transforming growth factor-β/Smad3 signaling results in accelerated healing of wounds in previously irradiated skin. American Journal of Pathology, 163, 2247–2257.PubMedGoogle Scholar
  47. 47.
    Flanders, K. C., Sullivan, C. D., Fujii, M., Sowers, A., Anzano, M. A., Arabshahi, A., et al. (2002). Mice lacking Smad3 are protected against cutaneous injury induced by ionizing radiation. American Journal of Pathology, 160, 1057–1068.PubMedGoogle Scholar
  48. 48.
    Forrester, E., Chytil, A., Bierie, B., Aakre, M., Gorska, A. E., Sharif-Afshar, A. R., et al. (2005). Effect of conditional knockout of the type II TGF-β receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Research, 65, 2296–2302.PubMedCrossRefGoogle Scholar
  49. 49.
    Franchi, A., Gallo, O., Sardi, I., & Santucci, M. (2001). Downregulation of transforming growth factor β type II receptor in laryngeal carcinogenesis. Journal of Clinical Pathology, 54, 201–204.PubMedCrossRefGoogle Scholar
  50. 50.
    Friedman, E., Gold, L. I., Klimstra, D., Zeng, Z. S., Winawer, S., & Cohen, A. (1995). High levels of transforming growth factor-β1 correlate with disease progression in human colon cancer. Cancer Epidemiology, Biomarkers & Prevention, 4, 549–554.Google Scholar
  51. 51.
    Gerdes, M. J., Larsen, M., Dang, T. D., Ressler, S. J., Tuxhorn, J. A., & Rowley, D. R. (2004). Regulation of rat prostate stromal cell myodifferentiation by androgen and TGF-β1. Prostate, 58, 299–307.PubMedCrossRefGoogle Scholar
  52. 52.
    Glaser, K. B., Li, J., Aakre, M. E., Morgan, D. W., Sheppard, G., Stewart, K. D., et al. (2002). Transforming growth factor β mimetics: discovery of 7-[4-(4-cyanophenyl)phenoxy]-heptanohydroxamin acid, a biaryl hydroxamate inhibitor of histone deacetylase. Mol Cancer Ther, 1, 759–768.PubMedGoogle Scholar
  53. 53.
    Glick, A. B., Flanders, K. C., Danielpour, D., Yuspa, S. H., & Sporn, M. B. (1989). Retinoic acid induces transforming growth factor-β2 in cultured keratinocytes and mouse epidermis. Cell Regulation, 1, 617–626.Google Scholar
  54. 54.
    Glick, A. B., Lee, M. M., Darwiche, N., Kulkarni, A. B., Karlsson, S., & Yuspa, S. H. (1994). Targeted deletion of the TGF-β1 gene causes rapid progression to squamous cell carcinoma. Genes & Development, 8, 2429–2440.Google Scholar
  55. 55.
    Go, C., Li, P., & Wang, X.-J. (1999). Blocking transforming growth factor β signaling in transgenic epidermis accelerates chemical carcinogenesis: A mechanism associated with increased angiogenesis. Cancer Research, 59, 2861–2868.PubMedGoogle Scholar
  56. 56.
    Gobbi, H., Dupont, W. D., Simpson, J. F., Plummer, W. D., Schuyler, P. A., Olson, S. J., et al. (1999). Transforming growth factor β and breast cancer risk in women with mammary epithelial hyperplasia. Journal of the National Cancer Institute, 91, 2096–2101.PubMedCrossRefGoogle Scholar
  57. 57.
    Goggins, M. (1998). Genetic alterations of the transforming growth factor β receptor genes in pancreatic and biliary adenocarcinomas. Cancer Research, 58, 5329–5332.PubMedGoogle Scholar
  58. 58.
    Gorsch, S. M., Memoli, V. A., Stukel, K. A., Gold, L. I., & Arrick, B. A. (1992). Immunohistochemical for transforming growth factor-β1 associates with disease progression in human breast cancer. Cancer Research, 52, 6949–6952.PubMedGoogle Scholar
  59. 59.
    Gorska, A. E., Jensen, R. A., Shyr, Y., Aakre, M. E., Bhowmick, N. A., & Moses, H. L. (2003). Transgenic mice expressing a dominant-negative mutant type II transforming growth factor-β receptor exhibit impaired mammary development and enhanced mammary tumor formation. American Journal of Pathology, 163, 1539–1549.PubMedGoogle Scholar
  60. 60.
    Goto, D., Yagi, K., Inoue, H., Iwamoto, I., Kawabata, M., Miyazono, K., et al. (1998). A single missense mutant of Smad3 inhibits activation of both Smad2 and Smad3, and has a dominant negative effect on TGF-β signals. FEBS Letters, 430, 201–204.PubMedCrossRefGoogle Scholar
  61. 61.
    Goumans, M. J., Valdimarsdottir, G., Itoh, S., Lebrin, F., Larsson, J., Mummery, C., et al. (2003). Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Molecular Cell, 12, 817–828.PubMedCrossRefGoogle Scholar
  62. 62.
    Grady, W. M., Myeroff, L. L., Swinler, S. E., Rajput, A., Thiagalingam, S., Lutterbaugh, J. D., et al. (1999). Mutational inactivation of transforming growth factor β receptor type II in microsatellite stable colon cancers. Cancer Research, 59, 320–324.PubMedGoogle Scholar
  63. 63.
    Groth, S., Schulze, M., Kalthoff, H., Faendrich, F., & Ungefroren, H. (2005). Adhesion and Rac1-dependent regulation of biglycan gene expression by TGF-β. Evidence for oxidative signaling through NADPH oxidase. Journal of Biological Chemistry, 280, 33190–33199.Google Scholar
  64. 64.
    Hahm, K. B., Cho, K., Lee, C., Im, Y. H., Chang, J., Choi, S. G., et al. (1999). Repression of the gene encoding the TGF-β type II receptor is a major target of the EW-FLIi oncoprotein. Nature Genetics, 23, 222–227.PubMedCrossRefGoogle Scholar
  65. 65.
    Hahn, S. A., Hoque, A. T., Moskaluk, C. A., da Costa, L. T., Schulte, M., Rozenblum, E., et al. (1996). Homozygous deletion map at 18q21.1 in pancreatic cancer. Cancer Research, 56, 490–494.PubMedGoogle Scholar
  66. 66.
    Han, S. U., Kim, H. T., Seong Do, H., Kim, Y. S., Park, Y. S., Bang, Y. J., et al. (2004). Loss of Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene, 23, 1333–1341.PubMedCrossRefGoogle Scholar
  67. 67.
    Hata, A., Shi, Y., & Massagué, J. (1998). TGF-β signaling and cancer: Structural and functional consequences of mutations in Smads. Molecular Medicine Today, 4, 257–262.PubMedCrossRefGoogle Scholar
  68. 68.
    He, J., Tegen, S. B., Krawitz, A. R., Martin, G. S., & Luo, K. (2003). The transforming activity of Ski and SnoN is dependent on their ability to repress the activity of Smad proteins. Journal of Biological Chemistry, 278, 30540–30547.PubMedCrossRefGoogle Scholar
  69. 69.
    Heldin, C.-H. (2004). Development and possible clinical use of antagonists for PDGF and TGF-β. Upsala Journal of Medical Science, 109, 165–178.Google Scholar
  70. 70.
    Howe, J. R. (1998). Mutations in the Smad4/DPC4 gene in juvenile polyposis. Science, 280, 1086–1088.PubMedCrossRefGoogle Scholar
  71. 71.
    Huntley, S., Davies, M., Matthews, J. B., Thomas, G., Marshall, J., Robinson, C. M., et al. (2004). Attenuated type II TGF-β receptor signaling in human malignant oral keratinocytes induces a less differentiated and more aggressive phenotype that is associated with metastatic dissemination. International Journal of Cancer, 110, 170–176.CrossRefGoogle Scholar
  72. 72.
    Iglesias, M., Frontelo, P., Gamallo, C., & Quintanilla, M. (2000). Blockade of Smad4 in transformed keratinocytes containing a Ras oncogene leads to hyperactivation of the Ras-dependent Erk signaling pathway associated with progression to undifferentiated carcinomas. Oncogene, 19, 4134–4145.PubMedCrossRefGoogle Scholar
  73. 73.
    Izumoto, S., Arita, N., Ohnishi, T., Hiraga, S., Taki, T., Tomita, N., et al. (1997). Microsatellite instability and mutated type II transforming growth factor-β receptor gene in gliomas. Cancer Letters, 112, 251–256.PubMedCrossRefGoogle Scholar
  74. 74.
    Jachimczak, P., Fabel-Schulte, K., Hessdorfer, B., Brysch, W., Schlingensiepen, K. H., Blesch, A., et al. (1995). Transforming growth factor-β-mediated regulation of human peripheral blood mononuclear cell proliferation as detected with phosphorothioate antisense oligodeoxynucleotides. Cellular Immunology, 165, 125–133.PubMedCrossRefGoogle Scholar
  75. 75.
    Jachimczak, P., Hessdorfer, B., Fabel-Schulte, K., Wismeth, C., Brysch, W., Schlingensiepen, K. H., et al. (1996). Transforming growth factor-β-mediated autocrine growth regulation of gliomas as detected with phosphorothioate antisense oligonucleotides. International Journal of Cancer, 65, 332–337.CrossRefGoogle Scholar
  76. 76.
    Jakowlew, S. B., Moody, T. W., You, L., & Mariano, J. M. (1998). Reduction in transforming growth factor-β type II receptor in mouse lung carcinogenesis. Molecular Carcinogenesis, 22, 46–56.PubMedCrossRefGoogle Scholar
  77. 77.
    Jakowlew, S. B., Moody, T. W., You, L., & Mariano, J. M. (1998). Transforming growth factor-beta expression in mouse lung carcinogenesis. Experimental Lung Research, 24, 579–593.PubMedGoogle Scholar
  78. 78.
    Kamaraju, A. K., & Roberts, A. B. (2005). Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-β-mediated Smad-dependent growth inhibition of human breast cancer cells in vivo. Journal of Biological Chemistry, 280, 1024–1036.PubMedCrossRefGoogle Scholar
  79. 79.
    Kang, S. H., Bang, Y. J., Im, Y. H., Yang, H. K., Lee, D. A., Lee, H. Y., et al. (1999). Transcriptional repression of the transforming growth factor β type I receptor gene by DNA methylation results in the development of TGF-β resistance in human gastric cancer. Oncogene, 18, 7280–7286.PubMedCrossRefGoogle Scholar
  80. 80.
    Kang, Y., Mariano, J. M., Andgisen, J., Moody, T. W., Diwan, B. A., Wakefield, L. M., et al. (2000). Enhanced tumorigenesis and reduced transforming growth factor-β type II receptor in lung tumors from mice with reduced gene dosage of transforming growth factor-β1. Molecular Carcinogenesis, 29, 112–126.PubMedCrossRefGoogle Scholar
  81. 81.
    Kang, Y., & Massagué, J. (2004). Epithelial–mesenchymal transitions: Twist in development and metastasis. Cell, 118, 277–279.PubMedCrossRefGoogle Scholar
  82. 82.
    Kawate, S., Ohwada, S., Hamada, K., Takenoshita, S., Morishita, Y., & Hagiwara, K. (1999). Mutation analysis of the transforming growth factor β type II receptor, Smad2, and Smad4 in hepatocellular carcinoma. International Journal of Oncology, 14, 127–131.PubMedGoogle Scholar
  83. 83.
    Kim, H.-P., Kim, B.-G., Letterio, J., & Leonard, W. J. (2005). Smad-dependent cooperative regulation of interleukin-2 receptor α chain gene expression by T cell receptor and TGF-β. Journal of Biological Chemistry, 280, 34042–34047.PubMedCrossRefGoogle Scholar
  84. 84.
    Kim, K. Y., Kim, B. C., Xu, Z., & Kim, S.-J. (2004). Mixed lineage kinase 3 (MLK3)-activated p38 MAP kinase mediates transforming growth factor-β-induced apoptosis in hepatoma cells. Journal of Biological Chemistry, 279, 29478–29484.PubMedCrossRefGoogle Scholar
  85. 85.
    Kim, S.-J., Im, Y.-H., Markowitz, S. D., & Bang, Y. J. (2000). Molecular mechanisms of inactivation of TGF-β receptors during carcinogenesis. Cytokine & Growth Factor Reviews, 11, 159–168.CrossRefGoogle Scholar
  86. 86.
    Kleeff, J., Ishiwata, T., Maruyama, H., Friess, H., Truong, P., Buchler, M. W., et al. (1999). The TGF-β signaling inhibitor Smad7 enhances tumorigenicity in pancreatic cancer. Oncogene, 18, 5363–5372.PubMedCrossRefGoogle Scholar
  87. 87.
    Kondo, M., Cubillo, E., Tobiume, K., Shirakihara, T., Fukuda, N., Suzuki, H., et al. (2004). A role for Id in the regulation of TGF-β-induced epithelial–mesenchymal transdifferentiation. Cell Death and Differentiation, 11, 1092–1101.PubMedCrossRefGoogle Scholar
  88. 88.
    Kulkarni, A. B., Huh, C. G., Becker, D., Geiser, A., Lyght, M., Flanders, K. C., et al. (1993). Transforming growth factor-β1 null mutation in mice causes excessive inflammatory response and early death. Proceedings of the National Academy of Sciences of the United States of America, 90, 770–774.PubMedCrossRefGoogle Scholar
  89. 89.
    Larisch, S., Yi, Y., Lotan, R., Kerner, H., Eimerl, S., Parks, T. W., et al. (2000). A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nature Cell Biology, 2, 915–921.PubMedCrossRefGoogle Scholar
  90. 90.
    Law, B. K., Chytil, A., Dumont, N., Hamilton, E. G., Waltner-Law, M. E., Aakre, M. E., et al. (2002). Rapamycin potentiates transforming growth factor β-induced growth arrest in non-transformed, oncogene-transformed, and human cancer cells. Molecular and Cellular Biology, 22, 8184–8198.PubMedCrossRefGoogle Scholar
  91. 91.
    Le Roy, C., & Wrana, J. L. (2005). Signaling and endocytosis: a team effort for cell migration. Developments in Cell, 9, 167–168.CrossRefGoogle Scholar
  92. 92.
    Lebrin, F., Goumans, M. J., Jonker, L., Carvalho, R. L., Valdimarsdottir, G., Thorikay, M., et al. (2004). Endoglin promotes endothelial cell proliferation and TGF-β/ALK1 signal transduction. EMBO Journal, 23, 4018–4028.PubMedCrossRefGoogle Scholar
  93. 93.
    Lei, X., Bandyopadhyay, A., Le, T., & Sun, L. (2002). Autocrine TGFβ supports growth and survival of human breast cancer MDA-MB-231 cells. Oncogene, 21, 7514–7523.PubMedCrossRefGoogle Scholar
  94. 94.
    Li, J., Kleeff, J., Felix, K., Penzel, R., Buchler, M. W., Korc, M., et al. (2004). Glypican-1 antisense transfection modulates TGF-β-dependent signaling in Colo-357 pancreatic cancer. Biochemical and Biophysical Research Communications, 320, 1148–1155.PubMedCrossRefGoogle Scholar
  95. 95.
    Lin, A. H., Luo, J., Mondshein, L. H., ten Dijke, P., Vivien, D., Contag, C. H., et al. (2005). Global analysis of Smad2/3-dependent TGF-β signaling in living mice reveals prominent tissue-specific responses to injury. Journal of Immunology, 175, 547–554.Google Scholar
  96. 96.
    Liu, X., Lee, J., Cooley, M., Bhogte, E., Hartley, S., & Glick, A. (2003). Smad7 but not Smad6 cooperates with oncogenic ras to cause malignant conversion in a mouse model for squamous cell carcinoma. Cancer Research, 63, 7760–7768.PubMedGoogle Scholar
  97. 97.
    Lonardo, F., Rusch, V., Langenfeld, J., Dmitrovsky, E., & Klimstra, D. S. (1999). Overexpression of cyclins D1 and E is frequent in bronchial preneoplasia and precedes squamous cell carcinoma development. Cancer Research, 59, 2470–2476.PubMedGoogle Scholar
  98. 98.
    Lu, S. L., Zhang, W. C., Akiyama, Y., Nomizu, T., & Yuasa, Y. (1996). Genomic structure of the transforming growth factor β type II receptor gene and its mutations in hereditary nonpolyposis colorectal cancers. Cancer Research, 56, 4595–4598.PubMedGoogle Scholar
  99. 99.
    Luttges, J., Galehdari, H., Brocker, V., Schwarte-Waldhoff, I., Henne-Bruns, D., Kloppel, G., et al. (2001). Allelic loss is often the first hit in the biallelic inactivation of the p53 and DPCβ4 genes during pancreatic carcinogenesis. American Journal of Pathology, 158, 1677–1683.PubMedGoogle Scholar
  100. 100.
    Maitra, A., Molberg, K., Albores-Saavedra, J., & Lindberg, G. (2000). Loss of Dpc4 expression in colonic adenocarcinomas correlates with the presence of metastatic disease. American Journal of Pathology, 157, 1105–1111.PubMedGoogle Scholar
  101. 101.
    Marie, J. C., Letterio, J. J., Gavin, M., & Rudensky, A. Y. (2005). TGF-β1 maintains suppressor function and Foxp3 expression in CD4+CD25+ regulatory T cells. Journal of Experimental Medicine, 201, 1061–1067.PubMedCrossRefGoogle Scholar
  102. 102.
    Markowitz, S., Wang, J., Myeroff, L., Parsons, R., Sun, L., Lutterbaugh, J., et al. (1995). Inactivation of the type II TGF-β receptor in colon cancer cells with microsatellite instability. Science, 268, 1336–1338.PubMedCrossRefGoogle Scholar
  103. 103.
    Marzo, A. L., Fitzpatrick, D. R., Robinson, B. W., & Scott, B. (1997). Antisense oligonuceotides specific for transforming growth factor β2 inhibit the growth of malignant mesothelioma both in vitro and in vivo. Cancer Research, 57, 3200–3207.PubMedGoogle Scholar
  104. 104.
    Massagué, J., Blain, S. W., & Lo, R. S. (2000). TGF-β signaling in growth control, cancer, and heritable disorders. Cell, 103, 295–309.PubMedCrossRefGoogle Scholar
  105. 105.
    Matsuyama, S., Iwadate, M., Kondo, M., Saitoh, M., Hanyu, A., Shimizu, K., et al. (2003). SB-431542 and Gleevec inhibit transforming growth factor-β-induced proliferation of human osteosarcoma cells. Cancer Research, 63, 7791–7798.PubMedGoogle Scholar
  106. 106.
    Maytin, E. V., Ubeda, M., Lin, J. C., & Habener, J. F. (2001). Stress-inducible transcription factor CHOP/GADD153 induces apoptosis in mammalian cells via p38 kinase-dependent and -independent mechanisms. Experimental Cell Research, 267, 193–204.PubMedCrossRefGoogle Scholar
  107. 107.
    Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436, 518–524.PubMedCrossRefGoogle Scholar
  108. 108.
    Minn, A. J., Kang, Y., Serganova, I., Gupta, G. P., Giri, D. D., Doubrovin, M., et al. (2005). Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. Journal of Clinical Investigation, 115, 44–55.PubMedCrossRefGoogle Scholar
  109. 109.
    Morén, A., Itoh, S., Moustakas, A., ten Dijke, P., Heldin, C.-H. (2000). Functional consequences of tumorigenic missense mutations in the amino-terminal domain of Smad4. Oncogene, 19, 4396–4404.PubMedCrossRefGoogle Scholar
  110. 110.
    Mori, N., Morishita, M., Tsukazaki, T., Giam, C. Z., Kumatori, A., Tanaka, Y., et al. (2001). Human T-cell leukemia virus type I oncoprotein Tax represses Smad-dependent transforming growth factor β signaling through interaction with CREB-binding protein/p300. Blood, 97, 2137–2144.PubMedCrossRefGoogle Scholar
  111. 111.
    Moses, H. L., Tucker, R. F., Leof, E. B., Coffey, R. J. Jr., Halper, J., & Shipley, G. D. (1985). Type β transforming growth factor is a growth stimulator and a growth inhibitor. In J. Feramisco, B. Ozanne & C. Stiles (Eds.), Cancer Cells 3. (pp. 67–71). Cold Spring Harbor, Cold Spring Harbor Laboratory.Google Scholar
  112. 112.
    Moustakas, A., & Heldin, C.-H. (2005). Non-Smad TGF-β signals. Journal of Cell Science, 118, 3573–3584.PubMedCrossRefGoogle Scholar
  113. 113.
    Murakami, S., Takashima, H., Sato-Watanabe, M., Chonan, S., Yamamoto, K., Saitoh, M., et al. (2004). Ursolic acid, an antagonist for transforming growth factor (TGF)-β1. FEBS Letters, 566, 55–59.PubMedCrossRefGoogle Scholar
  114. 114.
    Muraoka, R. S., Dumont, N., Ritter, C. A., Dugger, T. C., Brantley, D. M., Chen, J., et al. (2002). Blockade of TGF-β inhibits mammary tumor cell viability, migration, and metastasis. Journal of Clinical Investigation, 109, 1551–1559.PubMedCrossRefGoogle Scholar
  115. 115.
    Muraoka, R. S., Koh, Y., Roebuck, L. R., Sanders, M. E., Brantley-Sieders, D., Gorska, A. E., et al. (2003). Increased malignancy of neu-induced mammary tumors overexpressing active transforming growth factor β1. Molecular and Cellular Biology, 23, 8691–8703.PubMedCrossRefGoogle Scholar
  116. 116.
    Muraoka-Cook, R. S., Kurokawa, H., Koh, Y., Rorbes, J. T., Roebuck, L. R., Barcellos-Hoff, M. H., et al. (2004). Conditional overexpression of active transforming growth factor β1 accelerates metastases of transgenic mammary tumors. Cancer Research, 64, 9002–9011.PubMedCrossRefGoogle Scholar
  117. 117.
    Nakata, D., Hamada, J., Ba, Y., Matsushita, K., Shibata, T., Hosokawa, M., et al. (2002). Enhancement of tumorigenic, metastatic and in vitro invasive capacity of rat mammary tumor cells by transforming growth factor-β. Cancer Letters, 175, 95–106.PubMedCrossRefGoogle Scholar
  118. 118.
    Niu, Y., Xu, Y., Zhang, J., Bai, J., Yang, H., & Ma, T. (2001). β Proliferation and differentiation of prostatic stromal cells. British Journal of Urology International, 87, 386–393.Google Scholar
  119. 119.
    Norgaard, P., Hougaard, S., Poulsen, H. S., & Spang-Thomsen, M. (1995). Transforming growth factor β and cancer. Cancer Treatment Reviews, 21, 367–403.PubMedCrossRefGoogle Scholar
  120. 120.
    Oft, M., Heider, K. H., & Beug, H. (1998). TGFβ signaling is necessary for carcinoma cell invasiveness and metastasis. Current Biology, 8, 1243–1252.PubMedCrossRefGoogle Scholar
  121. 121.
    Okamoto, A., Jiang, W., Kim, S.-J., Spillare, E. A., Stoner, G. D., Weinstein, I. B., et al. (1994). Overexpression of human cyclin D1 reduces the transforming growth factor β (TGF-β) type II receptor and growth inhibition by TGF-β1 in an immortalized human esophageal epithelial cell line. Proceedings of the National Academy of Sciences of the United States of America, 91, 11576–11580.PubMedCrossRefGoogle Scholar
  122. 122.
    Ozdamar, B., Bose, R., Barrios-Rodiles, M., Wang, H. R., Zhang, Y., & Wrana, J. L. (2005). Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science, 307, 1603–1609.PubMedCrossRefGoogle Scholar
  123. 123.
    Pardali, K., Kowanetz, M., Heldin, C.-H., & Moustakas, A. (2005). Smad pathway-specific transcriptional regulation of the cell cycle inhibitor p21(WAF1/Cip1). Journal of Cellular Physiology, 204, 260–272.PubMedCrossRefGoogle Scholar
  124. 124.
    Pardali, K., Kurisaki, A., Morén, A., ten Dijke, P., Kardassis, D., & Moustakas, A. (2000). Role of smad proteins and transcription factor Sp1 in p21(Waf1/Cip1) regulation by transforming growth factor β. Journal of Biological Chemistry, 275, 29244–29256.PubMedCrossRefGoogle Scholar
  125. 125.
    Parekh, T. V., Gama, P., Wen, X., Demopoulos, R., Munger, J. S., Carcangiu, M. L., et al. (2002). Transforming growth factor β signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition. Cancer Research, 62, 2778–2790.PubMedGoogle Scholar
  126. 126.
    Park, J. A., Wang, E., Kurt, R. A., Schluter, S. F., Hersh, E. M., Akporiaye, E. T. (1997). Expression of an antisense transforming growth factor-β1 transgene reduces tumorigenicity of EMT6 mammary tumor cells. Cancer Gene Therapy, 4, 42–50.PubMedGoogle Scholar
  127. 127.
    Pece-Barbara, N., Vera, S., Kathirkamathamby, K., Liebner, S., Di Gugliemo, G. M., Dejana, E., et al. (2005). Endoglin null endothelial cells proliferate and are more responsive to transforming growth factor β with higher affinity receptors and an activated ALK1 pathway. Journal of Biological Chemistry, 280, 27800–27808.PubMedCrossRefGoogle Scholar
  128. 128.
    Peng, S. B., Yan, L., Xia, X., Watkins, S. A., Brooks, H. B., Beight, D., et al. (2005). Kinetic characterization of novel pyrazole TGF-β receptor I kinase inhibitors and their blockade of the epithelial–mesenchymal transition. Biochemistry, 44, 2293–2304.PubMedCrossRefGoogle Scholar
  129. 129.
    Pertovaara, L., Kaipainen, A., Mustonen, T., Orpana, A., Ferrara, N., Saksela, O., et al. (1994). Vascular endothelial growth factor is induced in response to transforming growth factor β in fibroblastic and epithelial cells. Journal of Biological Chemistry, 269, 6271–6274.PubMedGoogle Scholar
  130. 130.
    Picon, A., Gold, L. I., Wang, J., Cohen, A., & Friedman, E. (1998). A subset of human colon cancers express elevated levels of transforming growth factor-β1. Cancer Epidemiology, Biomarkers & Prevention, 7, 497–505.Google Scholar
  131. 131.
    Pierce, D. F., Gorska, A. E. Jr., Chytil, A., Meise, K. S., Page, D. L., Coffey, R. J., et al. (1995). Mammary tumor suppression by transforming growth factor β1 transgene expression. Proceedings of the National Academy of Sciences of the United States of America, 92, 4254–4258.PubMedCrossRefGoogle Scholar
  132. 132.
    Pietenpol, J. A., Stein, R. W., Moran, E., Yaciuk, P., Schlegel, R., Lyons, R. M., et al. (1990). TGF-β1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell, 61, 777–785.PubMedCrossRefGoogle Scholar
  133. 133.
    Platten, M., Wild-Bode, C., Wick, W., Leitlein, J., Dichgans, J., & Weller, M. (2001). N-[3,4-dimethyloxycinnamoyl]-anthranilic acid (tranilast) inhibits transforming growth factor-β release and reduces migration and invasiveness of human malignant glioma cells. International Journal of Cancer, 93, 53–61.CrossRefGoogle Scholar
  134. 134.
    Prunier, C., Ferrand, N., Frottier, B., Pessah, M., & Atfi, A. (2001). A mechanism for mutational inactivation of the tumor suppressor Smad2. Molecular and Cellular Biology, 21, 3302–3313.PubMedCrossRefGoogle Scholar
  135. 135.
    Prunier, C., Mazars, A., Noe, V., Bruyneel, E., Mareel, M., Gespach, C., et al. (1999). Evidence that Smad2 is a tumorsuppressor implicated in the control of cellular invasion. Journal of Biological Chemistry, 274, 22919–22922.PubMedCrossRefGoogle Scholar
  136. 136.
    Reiss, M. (1999). TGF-β and cancer. Microbes and Infection, 1, 1327–1347.PubMedCrossRefGoogle Scholar
  137. 137.
    Rich, J. N., Zhang, M., Datto, M. B., Bigner, D. D., & Wang, X.-F. (1999). Transforming growth factor-β-mediated p15(INK4B) induction and growth inhibition in astrocytes is Smad3-dependent and a pathway prominently altered in human glioma cell lines. Journal of Biological Chemistry, 274. 35053–35058.PubMedCrossRefGoogle Scholar
  138. 138.
    Riggins, G. J., Thiagalingam, S., Rozenblum, E., Weinsten, C. L., Kern, S. E., Hamilton, S. R., et al. (1996). Mad-related genes in the human. Nature, 13, 347–349.Google Scholar
  139. 139.
    Roberts, A. B., Piek, E., Böttinger, E. P., Ashcroft, G., Mitchell, J. B., & Flanders, K. C. (2001). Is Smad3 a major player in signal transduction pathways leading to fibrogenesis? Chest, 120, 43S–47S.PubMedCrossRefGoogle Scholar
  140. 140.
    Roberts, A. B., & Wakefield, L. M. (2003). The two faces of transforming growth factor β in carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 8621–8623.PubMedCrossRefGoogle Scholar
  141. 141.
    Rowland-Goldsmith, M. A., Maruyama, H., Kusama, T., Ralli, S., & Korc, M. (2001). Soluble type II transforming growth factor-β (TGF-β) receptor inhibits TGF-β signaling in COLO-357 pancreatic cancer cells in vitro and attenuates tumor formation. Clinical Cancer Research, 7, 2931–2940.PubMedGoogle Scholar
  142. 142.
    Rowland-Goldsmith, M. A., Maruyama, H., Matsuda, K., Idezawa, T., Ralli, M., Ralli, S., et al. (2002). Soluble type II transforming growth factor-β receptor attenuates expression of metastasis-associated genes and suppresses pancreatic cancer cell metastasis. Mol Cancer Ther, 1, 161–167.PubMedGoogle Scholar
  143. 143.
    Sabourin, C. L. K., Wang, O.-S., Ralston, S. L., Evans, J., Coate, J., Herzog, C. R., et al. (1998). Expression of cell cycle proteins in 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced mouse lung tumors. Experimental Lung Research, 24, 499–521.PubMedCrossRefGoogle Scholar
  144. 144.
    Saito, H., Tsujitani, S., Oka, S., Kondo, A., Ikeguchi, M., Maeta, M., et al. (2000). An elevated serum level of transforming growth factor-β1 (TGF-β1) significantly correlated with lymph node matastasis and poor prognosis in patients with gastric carcinoma. Anticancer Research, 20, 4489–4493.PubMedGoogle Scholar
  145. 145.
    Scandura, J. M., Boccuni, P., Massagué, J., & Nimer, S. D. (2004). Transforming growth factor β-induced cell cycle arrest of human hematopoietic cells requires p57KIP2 up-regulation. Proceedings of the National Academy of Sciences of the United States of America, 101, 15231–15236.PubMedCrossRefGoogle Scholar
  146. 146.
    Schiemann, W. P., Pfeifer, W. M., Levi, E., Kadin, M. E., & Lodish, H. F. (1999). A deletion in the gene for transforming growth factor β type I receptor abolishes growth regulation by transforming growth factor β in a cutaneous T-cell lymphoma. Blood, 94, 2854–2861.PubMedGoogle Scholar
  147. 147.
    Schlingensiepen, R., Goldbrunner, M., Szyrach, M. N., Stauder, G., Jachimczak, P., Bogahn, U., et al. (2005). Intracerebral and intrathecal infusion of the TGF-β2-specific antisense phosphorothioate oligonucleotide AP12009 in rabbits and primates. Oligonucleotides, 15, 94–104.PubMedCrossRefGoogle Scholar
  148. 148.
    Schulte-Hermann, R., Bursch, W., Kraupp-Grasl, B., Oberhammer, F., Wagner, A., & Jirtle, R. (1993). Cell proliferation and apoptosis in normal liver and preneoplastic foci. Environmental Health Perspectives, 101 (Suppl 5), 87–90.PubMedGoogle Scholar
  149. 149.
    Seon, B. K., Matsuno, F., Haruta, Y., Kondo, M., & Barcos, M. (1997). Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin. Clinical Cancer Research, 3, 1031–1044.PubMedGoogle Scholar
  150. 150.
    Shull, M. M., Ornsby, I., Kier, A. B., Pawlowski, S., Diebold, R. J., Yin, M., et al. (1992). Targeted disruption of the mouse transforming growth factor-β1 gene results in inflammatory disease. Nature, 359, 693–699.PubMedCrossRefGoogle Scholar
  151. 151.
    Siegel, P. M., Shu, W., Cardiff, R. D., Muller, W. J., & Massagué, J. (2003). Transforming growth factor β signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. Proceedings of the National Academy of Sciences of the United States of America, 100, 8430–8435.PubMedCrossRefGoogle Scholar
  152. 152.
    Singh, J., Chuaqui, C. E., Boriack-Sjodin, P. A., Lee, W. C., Pontz, T., Corbley, M. J., et al. (2003). Successful shape-based virtual screening: The discovery of a potent inhibitor of the type I TGFβ receptor kinase (TβRI). Bioorganic & Medicinal Chemistry Letters, 13, 4355–4359.CrossRefGoogle Scholar
  153. 153.
    Sirard, C., Kim, S., Mirtsos, C., Tadich, P., Hoodless, P. A., Itie, A., et al. (2000). Targeted disruption in murine cells reveals variable requirement for Smad4 in transforming growth factor β-related signaling. Journal of Biological Chemistry, 275, 2063–2070.PubMedCrossRefGoogle Scholar
  154. 154.
    Sosroseno, W., & Herminajeng, E. (1995). The immunoregulatory roles of transforming growth factor β. British Journal of Biomedical Science, 52, 142–148.PubMedGoogle Scholar
  155. 155.
    Stander, M., Naumann, U., Dumitrescu, L., Heneka, M., Loschmann, P., Gulbins, E., et al. (1998). Decorin gene transfer-mediated suppression of TGF-β synthesis abrogates experimental malignant glioma growth in vivo. Gene Therapy, 5, 1187–1194.PubMedCrossRefGoogle Scholar
  156. 156.
    Stearns, M. E., Garcia, F. U., Fudge, K., Rhim, J., & Wang, M. (1999). Role of interleukin 10 and transforming growth factor β1 in the angiogenesis and metastasis of human prostate primary tumor cell lines from orthotopic implants in severe combined immunodeficiency mice. Clinical Cancer Research, 5, 711–720.PubMedGoogle Scholar
  157. 157.
    Story, M. T., Hopp, K. A., & Meier, D. A. (1996). Regulation of basic fibroblast growth factor expression by transforming growth factor β in cultured human prostate stromal cells. Prostate, 28, 219–226.PubMedCrossRefGoogle Scholar
  158. 158.
    Subramanian, G., Schwarz, R. E., Higgins, L., McEnroe, G., Chakravarty, S., Dugar, S., et al. (2004). Targeting endogenous transforming growth factor β receptor signaling in Smad4-deficient human pancreatic carcinoma cells inhibits their invasive phenotype. Cancer Research, 64, 5200–5211.PubMedCrossRefGoogle Scholar
  159. 159.
    Suh, N., Roberts, A. B., Birkey Reffey, S., Miyazono, K., Itoh, S., ten Dijke, P., et al. (2003). Synthetic triterpenoids enhance transforming growth factor β /Smad signaling. Cancer Research, 63, 1371–1376.PubMedGoogle Scholar
  160. 160.
    Sun, L., Wu, G., Willson, J. K., Zborowska, E., Yang, J., Rajkarunanayake, I., et al. (1994). Expression of transforming growth factor β type II receptor leads to reduced malignancy in human breast cancer MCF-7 cells. Journal of Biological Chemistry, 269, 26449–26455.PubMedGoogle Scholar
  161. 161.
    Takaku, K., Miyoshi, H., Matsunaga, A., Oshima, M., Sasaki, N., & Taketo, M. M. (1999). Gastric and duodenal polyps in Smad4 (Dpc4) knockout mice. Cancer Research, 59, 6113–6117.PubMedGoogle Scholar
  162. 162.
    Takanami, I., Tanaka, F., Hashizume, & T., Kodaira, S. (1997). Roles of the transforming growth factor-β1 and its type I and II receptors in the development of a pulmonary adenocarcinoma: results of an immunohistochemical study. Journal of Surgical Oncology, 64, 262–267.PubMedCrossRefGoogle Scholar
  163. 163.
    Takekawa, M., Tatebayashi, K., Itoh, F., Adachi, M., Imai, K., & Saito, H. (2002). Smad-dependent GADD45β expression mediates delayed activation of p38 MAP kinase by TGF-β. EMBO Journal, 21, 6473–6482.PubMedCrossRefGoogle Scholar
  164. 164.
    Tang, B., Böttinger, E. P., Jakowlew, S. B., Bagnall, K. M., Mariano, J., Anver, M. R., et al. (1998). Transforming growth factor-β1 is a new form of tumor suppressor with true haploid insufficiency. Natural Medicines, 4, 802–807.CrossRefGoogle Scholar
  165. 165.
    Tang, B., de Castro, K., Barnes, H. E., Parks, W. T., Stewart, L., Böttinger, E. P., et al. (1999). Loss of responsiveness to transforming growth factor β induces malignant transformation of nontumorigenic rat prostate epithelial cells. Cancer Research, 59, 4834–4842.PubMedGoogle Scholar
  166. 166.
    Tang, B. W., Vu, M., Booker, T., Santer, S. J., Miller, F. R., Anver, M. R., et al. (2003). TGF-β switches from tumor suppressor to prometastatic factor in a model of breast cancer progression. Journal of Clinical Investigation, 112, 1116–1124.PubMedCrossRefGoogle Scholar
  167. 167.
    Tian, F., Byfield, S. D., Parks, W. T., Stuelten, C. H., Nemani, D., Zhang, Y. E., et al. (2004). Smad-binding defective mutant of transforming growth factor β type I receptor enhances tumorigenesis but suppresses metastasis of breast cancer cell lines. Cancer Research, 64, 4523–4530.PubMedCrossRefGoogle Scholar
  168. 168.
    Tian, F., DaCosta Byfield, S., Parks, W. T, Yoo, S., Felici, A., Tang, B., et al. (2003). Reduction in Smad2/3 signaling enhances tumorigenesis but suppressed metastasis of breast cancer cell lines. Cancer Research, 63. 8284–8292.PubMedGoogle Scholar
  169. 169.
    Torre-Amione, G., Neauchamp, R. D., Koeppen, B. H., Park, H., Schreiber, H., Moses, H. L., et al. (1990). A highly immunogenic tumor transfected with a murine transforming growth factor β1 cDNA escapes immune surveillance. Proceedings of the National Academy of Sciences of the United States of America, 87, 1486–1490.PubMedCrossRefGoogle Scholar
  170. 170.
    Tu, W. H., Thomas, T. Z., Masumori, N., Bhowmick, N. A., Gorska, A. E., Shyr, Y., et al. (2003). The loss of TGF-β signaling promotes prostate cancer metastasis. Neoplasia, 5, 267–277.PubMedGoogle Scholar
  171. 171.
    Tucker, R. F., Shipley, G. D., Moses, H. L., & Holley, R. W. (1984). Growth inhibitor from BSC-1 cells closely related to type β transforming growth factor. Science, 226, 705–707.PubMedCrossRefGoogle Scholar
  172. 172.
    Turco, A., Coppa, A., Aloe, S., Baccheschi, G., Morrone, S., Zupi, G., et al. (1999). Overexpression of transforming growth factor β-type II receptor reduces tumorigenicity and metastatic potential of K-ras-transformed thyroid cells. International Journal of Cancer, 80, 85–91.CrossRefGoogle Scholar
  173. 173.
    Tuxhorn, J. A., McAlhany, S. J., Yang, F., Dang, T. D., & Rowley, D. R. (2002). Inhibition of transforming growth factor-β activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Research, 62, 6021–6025.PubMedGoogle Scholar
  174. 174.
    Uchida, K., Nagatake, M., Osada, H., Yatabe, Y., Kondo, M., Mitsudomi, T., et al. (1996). Somatic in vivo alterations of the JV18-1 gene at 18q21 in human lung cancers. Cancer Research, 56, 5583–5585.PubMedGoogle Scholar
  175. 175.
    Ueki, N., Nakazato, M., Ohkawa, T., Ikeda, T., Amuro, Y., Hada, T., et al. (1992). Excessive production of transforming growth factor β1 can play an important role in the development of tumorigenesis by its action for angiogenesis. Validity of neutralizing antibodies to block tumor growth. Biochimica et Biophysica Acta, 1137, 189–196.PubMedCrossRefGoogle Scholar
  176. 176.
    Uhl, M., Aulwurm, S., Wischhusen, J., Weiler, M., Ma, J. Y., Almirez, R., et al. (2004). SD-208, a novel transforming growth factor β receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Cancer Research, 64, 7954–7961.PubMedCrossRefGoogle Scholar
  177. 177.
    Valcourt, U., Kowanetz, M., Niimi, H., Heldin, C.-H., & Moustakas, A. (2005). TGF-β and the Smad signaling pathway support transcriptomic reprogramming during epithelial–mesenchymal cell transition. Molecular Biology of the Cell, 16, 1987–2002PubMedCrossRefGoogle Scholar
  178. 178.
    Vijaychandra, K., Lee, J., & Glick, A. (2003). Smad3 regulates senescence and malignant conversion in a mouse multistage skin carcinogenesis model. Cancer Research, 63, 3447–3452.Google Scholar
  179. 179.
    Vincent, F., Hagiwara, K., Ke, Y., Stoner, G. D., Demetrick, D. J., & Bennett, W. P. (1996). Mutation analysis of the transforming growth factor β type II receptor in sporadic human cancers of the pancreas, liver, and breast. Biochemical and Biophysical Research Communications, 223, 561–564.PubMedCrossRefGoogle Scholar
  180. 180.
    Von Pfeil, A., Hakenjos, L., Herskind, C., Dittmann, K., Weller, M., & Rodemann, H. P. (2002). Irradiated homozygous TGF-β1 knockout fibroblasts show enhanced clonogenic survival as compared with TGF-β1 wild-type fibroblasts. International Journal of Radiation Oncology, 78, 331–339.Google Scholar
  181. 181.
    Wang, J., Han, W., Zborowska, E., Liang, J., Wang, X., Willson, J. K. V., et al. (1996). Reduced expression of transforming growth factor β type I receptor contributes to the malignancy of human colon carcinoma cells. Journal of Biological Chemistry, 271, 17366–17371.PubMedCrossRefGoogle Scholar
  182. 182.
    Wang, J., Sun, L., Myeroff, L., Wang, X., Gentry, L. E., Yang, J., et al. (1995). Demonstration that mutation of the type II transforming growth factor β receptor inactivates its tumor suppressor activity in replication error-positive colon carcinoma cells. Journal of Biological Chemistry, 270, 22044–22049.PubMedCrossRefGoogle Scholar
  183. 183.
    Weeks, B. H., He, W., Olson, K. L., & Wang, X. J. (2001). Inducible expression of transforming growth factor β1 in papillomas causes rapid metastasis. Cancer Research, 61, 7435–7443.PubMedGoogle Scholar
  184. 184.
    Welch, D., Fabra, A., & Nakajima, M. (1990). Transforming growth factor β stimulates mammary adenocarcima cell invasion and metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 87, 7678–7682.PubMedCrossRefGoogle Scholar
  185. 185.
    Wick, W., Platten, M., & Weller, M. (2001). Glimoa cell invasion: Regulation of metalloproteinase activity by TGF-β. Journal of Neuro-oncology, 53, 177–185.PubMedCrossRefGoogle Scholar
  186. 186.
    Willson, K. P., McCaffrey, P. G., Hsiao, K., Pazhanisamy, S., Galullo, V., Bemis, G. W., et al. (1997). The structural basis for the specificity of pyridinylimidazole inhibitors of p38 MAP kinase. Chemistry & Biology, 4, 423–431.CrossRefGoogle Scholar
  187. 187.
    Wojtowicz-Praga, S., Verma, U. N., Wakefield, L., Esteban, J. M., Hatmann, D., & Mazumder, A. (1996). Modulation of B16 melanoma growth and metastasis by anti-transforming growth factor β antibody and interleukin-2. Journal of Immunotherapy with Emphasis on Tumor Immunology, 19, 169–175.PubMedGoogle Scholar
  188. 188.
    Wolfraim, L. A., Fernandez, T. M., Mamura, M., Fuller, W. L., Kumar, R., Cole, D. E., et al. (2004). Loss of Smad3 in acute T-cell lymphoblastic leukemia. New England Journal of Medicine, 351, 528–530.CrossRefGoogle Scholar
  189. 189.
    Wolfraim, L. A., Walz, T. M., James, Z., Fernandez, T., & Letterio, J. J. (2004). p21Cip1 and p27Kip1 act in synergy to alter the sensitivity of naïve T-cells to TGF-β-mediated G1 arrest through modulation of IL-2 responsiveness. Journal of Immunology, 173, 3093–3102.Google Scholar
  190. 190.
    Wu, S. P., Sun, L. Z., Wilson, J. K., Humphrey, J. L., Kerbel, R. S., & Brattain, M. G. (1993). Repression of autocrine transforming growth factor β1 and β2 in quiescent CBS colon carcinoma cells leads to progression of tumorigenic properties. Cell Death & Differentiation, 4, 115–123.Google Scholar
  191. 191.
    Xavier, S., Piek, E., Fujii, M., Javelaud, J., Mauviel, A., Flanders, K. C., et al. (2004). Amelioration of radiation-induced fibrosis. Journal of Biological Chemistry, 279, 15167–15176.PubMedCrossRefGoogle Scholar
  192. 192.
    Xie, L., Law, B. K., Aakre, M. E., Edgerton, M., Shyr, Y., Bhowmick, N. A., et al. (2003). Transforming growth factor β-regulated gene expression in a mouse mammary gland epithelial cell line. Breast Cancer Research, 5, R187–R198.PubMedCrossRefGoogle Scholar
  193. 193.
    Xie, L., Law, B. K., Chyti, A. M., Brown, K. A., Aakre, M. E., & Moses, H. L. (2004). Activation of the Erk pathway is required for TGF-β1-induced EMT in vitro. Neoplasia, 6, 603–610.PubMedCrossRefGoogle Scholar
  194. 194.
    Xie, W., Bharathy, S., Kim, D., Haffty, B. G., Rimm, D. L., & Reiss, M. (2003). Frequent alterations of Smad signaling in human head and neck squamous cell carcinomas: a tissue microarray study. Oncology Research, 14, 61–73.PubMedGoogle Scholar
  195. 195.
    Xie, W., Mertens, J. C., Reiss, D. J., Rimm, D. L., Camp, R. L., Haffty, B. G., et al. (2002). Alterations of Smad signaling in human breast carcinoma are associated with poor outcome: A tissue microarray study. Cancer Research, 62, 497–505.PubMedGoogle Scholar
  196. 196.
    Xie, W., Rimm, D. L., Lin, Y., Shih, W. J., & Reiss, M. (2003). Loss of Smad signaling in colorectal cancer is associated with advanced disease and poor prognosis. Cancer Journal, 9, 302–312.CrossRefGoogle Scholar
  197. 197.
    Xu, X., Brodie, S. G., Yang, X., Im, Y. H., Parks, W. T., Chen, L., et al. (2000). Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene, 19, 1868–1874.PubMedCrossRefGoogle Scholar
  198. 198.
    Yagi, K., Furuhashi, M., Aoki, H., Goto, D., Kuwano, H., Sugamura, K., et al. (2002). C-myc is a downstream target of the Smad pathway. Journal of Biological Chemistry, 277, 854–861.PubMedCrossRefGoogle Scholar
  199. 199.
    Yakymovych, I., Engstrom, U., Grimsby, S., Heldin, C.-H., & Souchelnytskyi, S. (2002). Inhibition of transforming growth factor-β signaling by low molecular weight compounds interfering with ATP- or substrate-binding sites of the TGF β type I receptor kinase. Biochemistry, 41, 11000–11007.PubMedCrossRefGoogle Scholar
  200. 200.
    Yan, W., Vellucci, V. F., & Reiss M. (2000). Smad protein expression and activation in transforming growth factor-β refractory human squamous cell carcinoma cells. Oncology Research, 12, 157–167.PubMedGoogle Scholar
  201. 201.
    Yananaka, R., Tanaka, R., Yoshida, S., Saitoh, T., Fujita, K., & Naganuma, H. (1999). Suppression of TGF-β1 in human gliomas by retroviral gene transfection enhances susceptibility to LAK cells. Journal of Neuro-Oncology, 43, 27–34.CrossRefGoogle Scholar
  202. 202.
    Yang, E. Y., & Moses, H. L. (1999). Transforming growth factor β1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. Journal of Cell Biology, 111, 731–741.CrossRefGoogle Scholar
  203. 203.
    Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.PubMedCrossRefGoogle Scholar
  204. 204.
    Yang, X., Letterio, J. J., Lechleider, R. J., Chen, L., Hayman, R., Gu, H., et al. (1999). Targeted disruption of Smad3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-β. EMBO Journal, 18, 1280–1291.PubMedCrossRefGoogle Scholar
  205. 205.
    Yang, Y. A., Dukhanina, O., Tang, B., Mamura, M., Letterio, J. J., MacGregor, J., et al. (2002). Lifetime exposure to a soluble TGF-β antagonist protects mice against metastasis without adverse side effects. Journal of Clinical Investigation, 109, 1607–1615.PubMedCrossRefGoogle Scholar
  206. 206.
    Yin, J. J., Selender, K., Chirgwin, J. M., Dallas, M., Grubbs, B. G., Wieser, R., et al. (1999). TGF-β signaling blackade inhibits PTHrP secretion by breast cancer cells and bone metastases development. Journal of Clinical Investigation, 103, 197–206.PubMedGoogle Scholar
  207. 207.
    Yingling, J. M., Blanchard, K. L., & Sawyer, J. S. (2004). Development of TGF-β signalling inhibitors for cancer therapy. Nat Rev Drug Discov, 3, 1011–1022.PubMedCrossRefGoogle Scholar
  208. 208.
    Yoo, J., Ghiassi, M., Jirmanova, L., Balliet, A. G., Hoffman, B., Fornace, A. J. Jr., et al. (2003). Transforming growth factor β1-induced apoptosis is mediated by Smad-dependent expression of GADD45b through p38 activation. Journal of Biological Chemistry, 278, 43001–43007.PubMedCrossRefGoogle Scholar
  209. 209.
    Yu, L., Herbert, M. C., & Zhang, Y. E. (2002). TGF-β receptor-activated p38 MAP kinase mediates Smad-independent TGF-β responses. EMBO Journal, 21, 3749–3759.PubMedCrossRefGoogle Scholar
  210. 210.
    Zhao, W. L., Kobayashi, M., Ding, W., Yuan, L., Seth, P., Cornain, S., et al. (2002). Suppression of in vivo tumorigenicity of rat hepatoma cell line KDH-8 cells by soluble TGF-β receptor type II. Cancer Immunology and Immunotherapy, 51, 381–388.PubMedCrossRefGoogle Scholar
  211. 211.
    Zhou, W., Park, I., Pins, M., Kozlowski, J. M., Jovanovic, B., Zhang, J., et al. (2003). Dual regulation of proliferation and growth arrest in prostatic stromal cells by transforming growth factor-β1. Endocrinology, 144, 4280–4284.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.National Cancer InstituteCell and Cancer Biology BranchRockvilleUSA

Personalised recommendations