Cancer and Metastasis Reviews

, Volume 25, Issue 3, pp 357–371 | Cite as

The multifaceted roles of chemokines in malignancy

  • A. Ben-Baruch


Tumor development and progression are multifactorial processes, regulated by a large variety of intrinsic and microenvironmental factors. A key role in cancer is played by members of the chemokine superfamily. Chemokines and their receptors are expressed by tumor cells and by host cells, in primary tumors and in specific metastatic loci. The effects of chemokines on tumorigenesis are diverse: While some members of the superfamily significantly support this process, others inhibit fundamental events required for tumor establishment and metastasis. The current review describes the multifaceted roles of chemokines in malignancy, addressing four major aspects of their activities: (1) inducing leukocyte infiltration to tumors and regulating immune functions, with emphasis on tumor-associated macrophages (and the chemokines CCL2, CCL5), T cells (and the chemokines CXCL9, CXCL10) and dendritic cells (and the chemokines CCL19, CCL20, CCL21); (2) directing the homing of tumor cells to specific metastatic sites (the CXCL12–CXCR4 axis); (3) regulating angiogenic processes (mainly the ELR+–CXC and non-ELR–CXC chemokines); (4) acting directly on the tumor cells to control their malignancy-related functions. Together, these different chemokine functions establish a net of interactions between the tumor cells and their microenvironment, and partly dictate the fate of the malignancy cascade.


Angiogenesis Chemokines Infiltrating leukocytes Malignancy Metastasis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Murphy, P. M., Baggiolini, M., Charo, I. F., Hebert, C. A., Horuk, R., Matsushima, K., et al. (2000). International union of pharmacology. XXII. Nomenclature for chemokine receptors. Pharmacological Reviews, 52, 145–176.PubMedGoogle Scholar
  2. 2.
    Locati, M., Otero, K., Schioppa, T., Signorelli, P., Perrier, P., Baviera, S., et al. (2002). The chemokine system: Tuning and shaping by regulation of receptor expression and coupling in polarized responses. Allergy, 57, 972–982.PubMedCrossRefGoogle Scholar
  3. 3.
    Rot, A., & von Andrian, U. H. (2004). Chemokines in innate and adaptive host defense: Basic chemokinese grammar for immune cells. Annual Review of Immunology, 22, 891–928.PubMedCrossRefGoogle Scholar
  4. 4.
    Zlotnik, A., & Yoshie, O. (2000). Chemokines: A new classification system and their role in immunity. Immunity, 12, 121–127.PubMedCrossRefGoogle Scholar
  5. 5.
    Sallusto, F., Mackay, C. R., & Lanzavecchia, A. (2000). The role of chemokine receptors in primary, effector, and memory immune responses. Annual Review of Immunology, 18, 593–620.PubMedCrossRefGoogle Scholar
  6. 6.
    Cyster, J. G. (2000). Leukocyte migration: Scent of the T zone. Current Biology, 10, R30–R33.PubMedCrossRefGoogle Scholar
  7. 7.
    Kim, C. H., & Broxmeyer, H. E. (1999). Chemokines: Signal lamps for trafficking of T and B cells for development and effector function. Journal of Leukocyte Biology, 65, 6–15.PubMedGoogle Scholar
  8. 8.
    Bacon, K., Baggiolini, M., Broxmeyer, H., Horuk, R., Lindley, I., Mantovani, A., et al. (2002). Chemokine/chemokine receptor nomenclature. Journal of Interferon and Cytokine Research, 22, 1067–1068.PubMedCrossRefGoogle Scholar
  9. 9.
    Devalaraja, M. N., & Richmond, A. (1999). Multiple chemotactic factors: Fine control or redundancy? Trends in Pharmacological Science, 20, 151–156.CrossRefGoogle Scholar
  10. 10.
    Mantovani, A. (1999). The chemokine system: Redundancy for robust outputs. Immunology Today, 20, 254–257.PubMedCrossRefGoogle Scholar
  11. 11.
    Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: Implications for new anticancer therapies. Journal of Pathology, 196, 254–265.PubMedCrossRefGoogle Scholar
  12. 12.
    Sica, A., Saccani, A., & Mantovani, A. (2002). Tumor-associated macrophages: A molecular perspective. International Immunopharmacology, 2, 1045–1054.PubMedCrossRefGoogle Scholar
  13. 13.
    Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23, 549–555.PubMedCrossRefGoogle Scholar
  14. 14.
    Brigati, C., Noonan, D. M., Albini, A., & Benelli, R. (2002). Tumors and inflammatory infiltrates: Friends or foes? Clinical & Experimental Metastasis, 19, 247–258.CrossRefGoogle Scholar
  15. 15.
    Leek, R. D., & Harris, A. L. (2002). Tumor-associated macrophages in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 7, 177–189.PubMedCrossRefGoogle Scholar
  16. 16.
    Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews. Cancer, 4, 71–78.PubMedCrossRefGoogle Scholar
  17. 17.
    Mantovani, A., Allavena, P., Sozzani, S., Vecchi, A., Locati, M., & Sica, A. (2004). Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Seminars in Cancer Biology, 14, 155–160.PubMedCrossRefGoogle Scholar
  18. 18.
    Vicari, A. P., & Caux, C. (2002). Chemokines in cancer. Cytokine & Growth Factor Reviews, 13, 143–154.CrossRefGoogle Scholar
  19. 19.
    Vicari, A. P., Treilleux, I., & Lebecque, S. (2004). Regulation of the trafficking of tumour-infiltrating dendritic cells by chemokines. Seminars in Cancer Biology, 14, 161–169.PubMedCrossRefGoogle Scholar
  20. 20.
    Di Carlo, E., Forni, G., Lollini, P., Colombo, M. P., Modesti, A., & Musiani, P. (2001). The intriguing role of polymorphonuclear neutrophils in antitumor reactions. Blood, 97, 339–345.PubMedCrossRefGoogle Scholar
  21. 21.
    Hadden, J. W. (2003). Immunodeficiency and cancer: Prospects for correction. International Immunopharmacology, 3, 1061–1071.PubMedCrossRefGoogle Scholar
  22. 22.
    Malmberg, K. J. (2004). Effective immunotherapy against cancer: A question of overcoming immune suppression and immune escape? Cancer Immunology and Immunotherapy, 53, 879–892.PubMedGoogle Scholar
  23. 23.
    Diefenbach, A., & Raulet, D. H. (2002). The innate immune response to tumors and its role in the induction of T-cell immunity. Immuno-Review, 188, 9–21.CrossRefGoogle Scholar
  24. 24.
    Ben-Baruch, A. (2006). Inflammation-associated immune suppression in cancer: The roles played by cytokines, chemokines and additional mediators. Seminars in Cancer Biology, 16(1), 38–52.PubMedCrossRefGoogle Scholar
  25. 25.
    Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.PubMedCrossRefGoogle Scholar
  26. 26.
    Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: Back to Virchow? Lancet, 357, 539–545.PubMedCrossRefGoogle Scholar
  27. 27.
    Crowther, M., Brown, N. J., Bishop, E. T., & Lewis, C. E. (2001). Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. Journal of Leukocyte Biology, 70, 478–490.PubMedGoogle Scholar
  28. 28.
    Lee, A. H., Happerfield, L. C., Bobrow, L. G., & Millis, R. R. (1997). Angiogenesis and inflammation in invasive carcinoma of the breast. Journal of Clinical Pathology, 50, 669–673.PubMedGoogle Scholar
  29. 29.
    Gu, L., Tseng, S., Horner, R. M., Tam, C., Loda, M., & Rollins, B. J. (2000). Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature, 404, 407–411.PubMedCrossRefGoogle Scholar
  30. 30.
    Ben-Baruch, A. (2005). Breast cancer progression: A “vicious cycle” of pro-malignancy activities is mediated by inflammatory cells, chemokines and cytokines. Berlin Heidelberg New York: Springer.Google Scholar
  31. 31.
    Ben-Baruch, A. (2006). Pro-malignancy and putative anti-malignancy chemokines in the regulation of breast cancer progression. In: F. Columbus (Editor). Book Series “Focus on Immunology Research”. Nova Science Publishers. (Chapter 1, pp. 1–46).Google Scholar
  32. 32.
    Leek, R. D., Lewis, C. E., Whitehouse, R., Greenall, M., Clarke, J., & Harris, A. L. (1996). Association of macrophage infiltration with angiogenesis and prognosis in invasive breast carcinoma. Cancer Research, 56, 4625–4629.PubMedGoogle Scholar
  33. 33.
    Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Research, 64, 7022–7029.PubMedCrossRefGoogle Scholar
  34. 34.
    van Netten, J. P., Ashmed, B. J., Cavers, D., Fletcher, C., Thornton, I. G., Antonsen, B. L., et al. (1992). ‘Macrophages’ and their putative significance in human breast cancer. British Journal of Cancer, 66, 220–221.PubMedGoogle Scholar
  35. 35.
    Yu, J. L., & Rak, J. W. (2003). Host microenvironment in breast cancer development: Inflammatory and immune cells in tumour angiogenesis and arteriogenesis. Breast Cancer Research, 5, 83–88.PubMedCrossRefGoogle Scholar
  36. 36.
    Pupa, S. M., Bufalino, R., Invernizzi, A. M., Andreola, S., Rilke, F., Lombardi, L., et al. (1996). Macrophage infiltrate and prognosis in c-erbB-2-overexpressing breast carcinomas. Journal of Clinical Oncology, 14, 85–94.PubMedGoogle Scholar
  37. 37.
    Leek, R. D., Landers, R. J., Harris, A. L., & Lewis, C. E. (1999). Necrosis correlates with high vascular density and focal macrophage infiltration in invasive carcinoma of the breast. British Journal of Cancer, 79, 991–995.PubMedCrossRefGoogle Scholar
  38. 38.
    Volodko, N., Reiner, A., Rudas, M., & Jakesz, R. (2004). Tumour-associated macrophages in breast cancer and their prognostic correlations. The Breast, 7, 99–105.CrossRefGoogle Scholar
  39. 39.
    Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S. K., Doni, A., Rapisarda, A., et al. (2003). Regulation of the chemokine receptor CXCR4 by hypoxia. Journal of Experimental Medicine, 198, 1391–1402.PubMedCrossRefGoogle Scholar
  40. 40.
    Conti, I., & Rollins, B. J. (2004). CCL2 (monocyte chemoattractant protein-1) and cancer. Seminars in Cancer Biology, 14, 149–154.PubMedCrossRefGoogle Scholar
  41. 41.
    Luboshits, G., Shina, S., Kaplan, O., Engelberg, S., Nass, D., Lifshitz-Mercer, B., et al. (1999). Elevated expression of the CC chemokine regulated on activation, normal T cell expressed and secreted (RANTES) in advanced breast carcinoma. Cancer Research, 59, 4681–4687.PubMedGoogle Scholar
  42. 42.
    Ueno, T., Toi, M., Saji, H., Muta, M., Bando, H., Kuroi, K., et al. (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical Cancer Research, 6, 3282–3289.PubMedGoogle Scholar
  43. 43.
    Goede, V., Brogelli, L., Ziche, M., & Augustin, H. G. (1999). Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1. International Journal of Cancer, 82, 765–770.CrossRefGoogle Scholar
  44. 44.
    Valkovic, T., Lucin, K., Krstulja, M., Dobi-Babic, R., & Jonjic, N. (1998). Expression of monocyte chemotactic protein-1 in human invasive ductal breast cancer. Pathology Research and Practice, 194, 335–340.Google Scholar
  45. 45.
    Valkovic, T., Fuckar, D., Stifter, S., Matusan, K., Hasan, M., Dobrila, F., et al. (2005). Macrophage level is not affected by monocyte chemotactic protein-1 in invasive ductal breast carcinoma. Journal of Cancer Research and Clinical Oncology.Google Scholar
  46. 46.
    Saji, H., Koike, M., Yamori, T., Saji, S., Seiki, M., Matsushima, K., et al. (2001). Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma. Cancer, 92, 1085–1091.PubMedCrossRefGoogle Scholar
  47. 47.
    Bieche, I., Lerebours, F., Tozlu, S., Espie, M., Marty, M., & Lidereau, R. (2004). Molecular profiling of inflammatory breast cancer: Identification of a poor-prognosis gene expression signature. Clinical Cancer Research, 10, 6789–6795.PubMedCrossRefGoogle Scholar
  48. 48.
    Niwa, Y., Akamatsu, H., Niwa, H., Sumi, H., Ozaki, Y., & Abe, A. (2001). Correlation of tissue and plasma RANTES levels with disease course in patients with breast or cervical cancer. Clinical Cancer Research, 7, 285–289.PubMedGoogle Scholar
  49. 49.
    Lebrecht, A., Grimm, C., Lantzsch, T., Ludwig, E., Hefler, L., Ulbrich, E. et al. (2004). Monocyte chemoattractant protein-1 serum levels in patients with breast cancer. Tumour Biology, 25, 14–17.PubMedCrossRefGoogle Scholar
  50. 50.
    Robinson, S. C., Scott, K. A., Wilson, J. L., Thompson, R. G., Proudfoot, A. E., & Balkwill, F. R. (2003). A chemokine receptor antagonist inhibits experimental breast tumor growth. Cancer Research, 63, 8360–8365.PubMedGoogle Scholar
  51. 51.
    Stormes, K. A., Lemken, C. A., Lepre, J. V., Marinucci, M. N., & Kurt, R. A. (2005). Inhibition of metastasis by inhibition of tumor-derived CCL5. Breast Cancer Research and Treatment, 89, 209–212.PubMedCrossRefGoogle Scholar
  52. 52.
    Salcedo, R., Ponce, M. L., Young, H. A., Wasserman, K., Ward, J. M., Kleinman, H. K., et al. (2000). Human endothelial cells express CCR2 and respond to MCP-1: Direct role of MCP-1 in angiogenesis and tumor progression. Blood, 96, 34–40.PubMedGoogle Scholar
  53. 53.
    Adler, E. P., Lemken, C. A., Katchen, N. S., & Kurt, R. A. (2003). A dual role for tumor-derived chemokine RANTES (CCL5). Immunology Letters, 90, 187–194.PubMedCrossRefGoogle Scholar
  54. 54.
    Azenshtein, E., Luboshits, G., Shina, S., Neumark, E., Shahbazian, D., Weil, M., et al. (2002). The CC chemokine RANTES in breast carcinoma progression: Regulation of expression and potential mechanisms of promalignant activity. Cancer Research, 62, 1093–1102.PubMedGoogle Scholar
  55. 55.
    Neumark, E., Anavi, R., Witz, I. P., & Ben-Baruch, A. (1999). MCP-1 expression as a potential contributor to the high malignancy phenotype of murine mammary adenocarcinoma cells. Immunology Letters, 68, 141–146.PubMedCrossRefGoogle Scholar
  56. 56.
    Neumark, E., Sagi-Assif, O., Shalmon, B., Ben-Baruch, A., & Witz, I. P. (2003). Progression of mouse mammary tumors: MCP-1-TNFalpha cross-regulatory pathway and clonal expression of promalignancy and antimalignancy factors. International Journal of Cancer, 106, 879–886.CrossRefGoogle Scholar
  57. 57.
    Robinson, S. C., Scott, K. A., & Balkwill, F. R. (2002). Chemokine stimulation of monocyte matrix metalloproteinase-9 requires endogenous TNF-alpha. European Journal of Immunology, 32, 404–412.PubMedCrossRefGoogle Scholar
  58. 58.
    Neumark, E., Cohn, M. A., Lukanidin, E., Witz, I. P., & Ben-Baruch, A. (2002). Possible co-regulation of genes associated with enhanced progression of mammary adenocarcinomas. Immunology Letters, 82, 111–121.PubMedCrossRefGoogle Scholar
  59. 59.
    Ben-Baruch, A. (2003). Host microenvironment in breast cancer development: Inflammatory cells, cytokines and chemokines in breast cancer progression—Reciprocal tumor–microenvironment interactions. Breast Cancer Research, 5, 31–36.PubMedCrossRefGoogle Scholar
  60. 60.
    Azenshtein, E., Meshel, T., Shina, S., Barak, N., Keydar, I., & Ben-Baruch, A. (2005). The angiogenic factors CXCL8 and VEGF in breast cancer: Regulation by an array of pro-malignancy factors. Cancer Letters, 217, 73–86.PubMedCrossRefGoogle Scholar
  61. 61.
    Vitiello, P. F., Shainheit, M. G., Allison, E. M., Adler, E. P., & Kurt, R. A. (2004). Impact of tumor-derived CCL2 on T cell effector function. Immunology Letters, 91, 239–245.PubMedCrossRefGoogle Scholar
  62. 62.
    Kurt, R. A., Baher, A., Wisner, K. P., Tackitt, S., & Urba, W. J. (2001). Chemokine receptor desensitization in tumor-bearing mice. Cell Immunology, 207, 81–88.CrossRefGoogle Scholar
  63. 63.
    Neville, L. F., Mathiak, G., & Bagasra, O. (1997). The immunobiology of interferon-gamma inducible protein 10 kD (IP-10): A novel, pleiotropic member of the C-X-C chemokine superfamily. Cytokine & Growth Factor Reviews, 8, 207–219.CrossRefGoogle Scholar
  64. 64.
    Farber, J. M. (1997). Mig and IP-10: CXC chemokines that target lymphocytes. Journal of Leukocyte Biology, 61, 246–257.PubMedGoogle Scholar
  65. 65.
    Luster, A. D., & Leder, P. (1993). IP-10, a -C-X-C- chemokine, elicits a potent thymus-dependent antitumor response in vivo. Journal of Experimental Medicine, 178, 1057–1065.PubMedCrossRefGoogle Scholar
  66. 66.
    Palmer, K., Hitt, M., Emtage, P. C., Gyorffy, S., & Gauldie, J. (2001). Combined CXC chemokine and interleukin-12 gene transfer enhances antitumor immunity. Gene Therapy, 8, 282–290.PubMedCrossRefGoogle Scholar
  67. 67.
    Boggio, K., Nicoletti, G., Di Carlo, E., Cavallo, F., Landuzzi, L., Melani, C., et al. (1998). Interleukin 12-mediated prevention of spontaneous mammary adenocarcinomas in two lines of Her-2/neu transgenic mice. Journal of Experimental Medicine, 188, 589–596.PubMedCrossRefGoogle Scholar
  68. 68.
    Dorsey, R., Kundu, N., Yang, Q., Tannenbaum, C. S., Sun, H., Hamilton, T. A., et al. (2002). Immunotherapy with interleukin-10 depends on the CXC chemokines inducible protein-10 and monokine induced by IFN-gamma. Cancer Research, 62, 2606–2610.PubMedGoogle Scholar
  69. 69.
    Sun, H., Kundu, N., Dorsey, R., Jackson, M. J., & Fulton, A. M. (2001). Expression of the chemokines IP-10 and mig in IL-10 transduced tumors. Journal of Immunotherapy, 24, 138–143.CrossRefGoogle Scholar
  70. 70.
    Gunn, M. D. (2003). Chemokine mediated control of dendritic cell migration and function. Seminars in Immunology, 15, 271–276.PubMedCrossRefGoogle Scholar
  71. 71.
    Caux, C., Vanbervliet, B., Massacrier, C., Ait-Yahia, S., Vaure, C., Chemin, K., et al. (2002). Regulation of dendritic cell recruitment by chemokines. Transplantation, 73, S7–S11.PubMedCrossRefGoogle Scholar
  72. 72.
    Treilleux, I., Blay, J. Y., Bendriss-Vermare, N., Ray-Coquard, I., Bachelot, T., Guastalla, J. P., et al. (2004). Dendritic cell infiltration and prognosis of early stage breast cancer. Clinical Cancer Research, 10, 7466–7474.PubMedCrossRefGoogle Scholar
  73. 73.
    Bell, D., Chomarat, P., Broyles, D., Netto, G., Harb, G. M., Lebecque, S., et al. (1999). In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. Journal of Experimental Medicine, 190, 1417–1426.PubMedCrossRefGoogle Scholar
  74. 74.
    Thomachot, M. C., Bendriss-Vermare, N., Massacrier, C., Biota, C., Treilleux, I., Goddard, S., et al. (2004). Breast carcinoma cells promote the differentiation of CD34+ progenitors towards 2 different subpopulations of dendritic cells with CD1a(high)CD86(−)Langerin− and CD1a(+)CD86(+)Langerin+ phenotypes. International Journal of Cancer, 110, 710–720.CrossRefGoogle Scholar
  75. 75.
    Lewko, B., Zoltowska, A., Stepinski, J., Roszkiewicz, A., & Moszkowska, G. (2000). Dendritic and cancer cells in the breast tumors—An immunohistochemical study: Short communication. Medical Science Monitor, 6, 892–895.PubMedGoogle Scholar
  76. 76.
    Lespagnard, L., Gancberg, D., Rouas, G., Leclercq, G., de Saint-Aubain Somerhausen, N., Di Leo, A., et al. (1999). Tumor-infiltrating dendritic cells in adenocarcinomas of the breast: A study of 143 neoplasms with a correlation to usual prognostic factors and to clinical outcome. International Journal of Cancer, 84, 309–314.CrossRefGoogle Scholar
  77. 77.
    Fidler, I. J. (2002). Critical determinants of metastasis. Seminars in Cancer Biology, 12, 89–96.PubMedCrossRefGoogle Scholar
  78. 78.
    Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.PubMedCrossRefGoogle Scholar
  79. 79.
    Schmid, B. C., Rudas, M., Rezniczek, G. A., Leodolter, S., & Zeillinger, R. (2004). CXCR4 is expressed in ductal carcinoma in situ of the breast and in atypical ductal hyperplasia. Breast Cancer Research and Treatment, 84, 247–250.PubMedCrossRefGoogle Scholar
  80. 80.
    Kato, M., Kitayama, J., Kazama, S., & Nagawa, H. (2003). Expression pattern of CXC chemokine receptor-4 is correlated with lymph node metastasis in human invasive ductal carcinoma. Breast Cancer Research, 5, R144–R150.PubMedCrossRefGoogle Scholar
  81. 81.
    Li, Y. M., Pan, Y., Wei, Y., Cheng, X., Zhou, B. P., Tan, M., et al. (2004). Upregulation of CXCR4 is essential for HER2-mediated tumor metastasis. Cancer Cell, 6, 459–469.PubMedCrossRefGoogle Scholar
  82. 82.
    Lee, B. C., Lee, T. H., Avraham, S., & Avraham, H. K. (2004). Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Molecular Cancer Research, 2, 327–338.PubMedGoogle Scholar
  83. 83.
    Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3, 537–549.PubMedCrossRefGoogle Scholar
  84. 84.
    Smith, M. C., Luker, K. E., Garbow, J. R., Prior, J. L., Jackson, E., Piwnica-Worms, D., et al. (2004). CXCR4 regulates growth of both primary and metastatic breast cancer. Cancer Research, 64, 8604–8612.PubMedCrossRefGoogle Scholar
  85. 85.
    Lapteva, N., Yang, A. G., Sanders, D. E., Strube, R. W., & Chen, S. Y. (2005). CXCR4 knockdown by small interfering RNA abrogates breast tumor growth in vivo. Cancer Gene Therapy, 12, 84–89.PubMedCrossRefGoogle Scholar
  86. 86.
    Liang, Z., Wu, T., Lou, H., Yu, X., Taichman, R. S., Lau, S. K., et al. (2004). Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4. Cancer Research, 64, 4302–4308.PubMedCrossRefGoogle Scholar
  87. 87.
    Tamamura, H., Hori, A., Kanzaki, N., Hiramatsu, K., Mizumoto, M., Nakashima, H., et al. (2003). T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer. FEBS Letters, 550, 79–83.PubMedCrossRefGoogle Scholar
  88. 88.
    Sun, R., Gao, P., Chen, L., Ma, D., Wang, J., Oppenheim, J. J., et al. (2005). Protein kinase C zeta is required for epidermal growth factor-induced chemotaxis of human breast cancer cells. Cancer Research, 65, 1433–1441.PubMedCrossRefGoogle Scholar
  89. 89.
    Balkwill, F. (2004). The significance of cancer cell expression of the chemokine receptor CXCR4. Seminars in Cancer Biology, 14, 171–179.PubMedCrossRefGoogle Scholar
  90. 90.
    Hall, J. M., & Korach, K. S. (2003). Stromal cell-derived factor 1, a novel target of estrogen receptor action, mediates the mitogenic effects of estradiol in ovarian and breast cancer cells. Molecular Endocrinology, 17, 792–803.PubMedCrossRefGoogle Scholar
  91. 91.
    Kang, H., Mansel, R. E., & Jiang, W. G. (2005). Genetic manipulation of stromal cell-derived factor-1 attests the pivotal role of the autocrine SDF-1–CXCR4 pathway in the aggressiveness of breast cancer cells. International Journal of Oncology, 26, 1429–1434.PubMedGoogle Scholar
  92. 92.
    Porcile, C., Bajetto, A., Barbieri, F., Barbero, S., Bonavia, R., Biglieri, M., et al. (2005). Stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Experimental Cell Research.Google Scholar
  93. 93.
    Scotton, C. J., Wilson, J. L., Scott, K., Stamp, G., Wilbanks, G. D., Fricker, S., et al. (2002). Multiple actions of the chemokine CXCL12 on epithelial tumor cells in human ovarian cancer. Cancer Research, 62, 5930–5938.PubMedGoogle Scholar
  94. 94.
    Bachelder, R. E., Wendt, M. A., & Mercurio, A. M. (2002). Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4. Cancer Research, 62, 7203–7206.PubMedGoogle Scholar
  95. 95.
    Zlotnik, A. (2004). Chemokines in neoplastic progression. Seminars in Cancer Biology, 14, 181–185.PubMedCrossRefGoogle Scholar
  96. 96.
    Murakami, T., Cardones, A. R., & Hwang, S. T. (2004). Chemokine receptors and melanoma metastasis. Journal of Dermatological Science, 36, 71–78.PubMedCrossRefGoogle Scholar
  97. 97.
    Youngs, S. J., Ali, S. A., Taub, D. D., & Rees, R. C. (1997). Chemokines induce migrational responses in human breast carcinoma cell lines. International Journal of Cancer, 71, 257–266.CrossRefGoogle Scholar
  98. 98.
    Prest, S. J., Rees, R. C., Murdoch, C., Marshall, J. F., Cooper, P. A., & Bibby, M., et al. (1999). Chemokines induce the cellular migration of MCF-7 human breast carcinoma cells: Subpopulations of tumour cells display positive and negative chemotaxis and differential in vivo growth potentials. Clinical & Experimental Metastasis, 17, 389–396.CrossRefGoogle Scholar
  99. 99.
    Bendre, M. S., Gaddy-Kurten, D., Mon-Foote, T., Akel, N. S., Skinner, R. A., Nicholas, R. W., et al. (2002). Expression of interleukin 8 and not parathyroid hormone-related protein by human breast cancer cells correlates with bone metastasis in vivo. Cancer Research, 62, 5571–5579.PubMedGoogle Scholar
  100. 100.
    Bendre, M. S., Montague, D. C., Peery, T., Akel, N. S., Gaddy, D., & Suva, L. J. (2003). Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease. Bone, 33, 28–37.PubMedCrossRefGoogle Scholar
  101. 101.
    Goldberg-Bittman, L., Sagi-Assif, O., Meshel, T., Nevo, I., Levy-Nissenbaum, O., Yron, I., et al. (2005). Cellular characteristics of neuroblastoma cells: Regulation by the ELR–CXC chemokine CXCL10 and expression of a CXCR3-like receptor. Cytokine, 29, 105–117.PubMedCrossRefGoogle Scholar
  102. 102.
    Strieter, R. M., Belperio, J. A., Phillips, R. J., & Keane, M. P. (2004). CXC chemokines in angiogenesis of cancer. Seminars in Cancer Biology, 14, 195–200.PubMedCrossRefGoogle Scholar
  103. 103.
    Belperio, J. A., Keane, M. P., Arenberg, D. A., Addison, C. L., Ehlert, J. E., Burdick, M. D., et al. (2000). CXC chemokines in angiogenesis. Journal of Leukocyte Biology, 68, 1–8.PubMedGoogle Scholar
  104. 104.
    Salcedo, R., & Oppenheim, J. J. (2003). Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses. Microcirculation, 10, 359–370.PubMedCrossRefGoogle Scholar
  105. 105.
    Heidemann, J., Ogawa, H., Dwinell, M. B., Rafiee, P., Maaser, C., Gockel, H. R., et al. (2003). Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2. Journal of Biological Chemistry, 278, 8508–8515.PubMedCrossRefGoogle Scholar
  106. 106.
    Addison, C. L., Daniel, T. O., Burdick, M. D., Liu, H., Ehlert, J. E., Xue, Y. Y., et al. (2000). The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR+ CXC chemokine-induced angiogenic activity. Journal of Immunology, 165, 5269–5277.Google Scholar
  107. 107.
    Benoy, I. H., Salgado, R., Van Dam, P., Geboers, K., Van Marck, E., Scharpe, S., et al. (2004). Increased serum interleukin-8 in patients with early and metastatic breast cancer correlates with early dissemination and survival. Clinical Cancer Research, 10, 7157–7162.PubMedCrossRefGoogle Scholar
  108. 108.
    Yokoe, T., Iino, Y., Takei, H., Horiguchi, J., Koibuchi, Y., Maemura, M., et al. (1997). Changes of cytokines and thyroid function in patients with recurrent breast cancer. Anticancer Research, 17, 695–699.PubMedGoogle Scholar
  109. 109.
    Palkowetz, K. H., Royer, C. L., Garofalo, R., Rudloff, H. E., Schmalstieg, F. C., Jr., & Goldman, A. S. (1994). Production of interleukin-6 and interleukin-8 by human mammary gland epithelial cells. Journal of Reproductive Immunology, 26, 57–64.PubMedCrossRefGoogle Scholar
  110. 110.
    Basolo, F., Conaldi, P. G., Fiore, L., Calvo, S., & Toniolo, A. (1993). Normal breast epithelial cells produce interleukins 6 and 8 together with tumor-necrosis factor: Defective IL6 expression in mammary carcinoma. International Journal of Cancer, 55, 926–930.Google Scholar
  111. 111.
    Pantschenko, A. G., Pushkar, I., Anderson, K. H., Wang, Y., Miller, L. J., Kurtzman, S. H., et al. (2003). The interleukin-1 family of cytokines and receptors in human breast cancer: Implications for tumor progression. International Journal of Oncology, 23, 269–284.PubMedGoogle Scholar
  112. 112.
    Miller, L. J., Kurtzman, S. H., Wang, Y., Anderson, K. H., Lindquist, R. R., & Kreutzer, D. L. (1998). Expression of interleukin-8 receptors on tumor cells and vascular endothelial cells in human breast cancer tissue. Anticancer Research, 18, 77–81.PubMedGoogle Scholar
  113. 113.
    Lin, Y., Huang, R., Chen, L., Li, S., Shi, Q., Jordan, C., et al. (2004). Identification of interleukin-8 as estrogen receptor-regulated factor involved in breast cancer invasion and angiogenesis by protein arrays. International Journal of Cancer, 109, 507–515.CrossRefGoogle Scholar
  114. 114.
    Toulza, F., Eliaou, J. F., & Pinet, V. (2005). Breast tumor cell soluble factors induce monocytes to produce angiogenic but not angiostatic CXC chemokines. International Journal of Cancer, 115, 429–436.CrossRefGoogle Scholar
  115. 115.
    Kanda, S., Mochizuki, Y., & Kanetake, H. (2003). Stromal cell-derived factor-1alpha induces tube-like structure formation of endothelial cells through phosphoinositide 3-kinase. Journal of Biological Chemistry, 278, 257–262.PubMedCrossRefGoogle Scholar
  116. 116.
    Neuhaus, T., Stier, S., Totzke, G., Gruenewald, E., Fronhoffs, S., Sachinidis, A., et al. (2003). Stromal cell-derived factor 1alpha (SDF-1alpha) induces gene-expression of early growth response-1 (Egr-1) and VEGF in human arterial endothelial cells and enhances VEGF induced cell proliferation. Cell Proliferation, 36, 75–86.PubMedCrossRefGoogle Scholar
  117. 117.
    Mirshahi, F., Pourtau, J., Li, H., Muraine, M., Trochon, V., Legrand, E., et al. (2000). SDF-1 activity on microvascular endothelial cells: Consequences on angiogenesis in in vitro and in vivo models. Thrombosis Research, 99, 587–594.PubMedCrossRefGoogle Scholar
  118. 118.
    Salcedo, R., Wasserman, K., Young, H. A., Grimm, M. C., Howard, O. M., Anver, M. R., et al. (1999). Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. American Journal of Pathology, 154, 1125–1135.PubMedGoogle Scholar
  119. 119.
    Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121, 335–348.PubMedCrossRefGoogle Scholar
  120. 120.
    Phillips, R. J., Burdick, M. D., Lutz, M., Belperio, J. A., Keane, M. P., & Strieter, R. M. (2003). The stromal derived factor-1/CXCL12–CXC chemokine receptor 4 biological axis in non-small cell lung cancer metastases. American Journal of Respiratory and Critical Care Medicine, 167, 1676–1686.PubMedCrossRefGoogle Scholar
  121. 121.
    Hong, K. H., Ryu, J., & Han, K. H. (2005). Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A. Blood, 105, 1405–1407.PubMedCrossRefGoogle Scholar
  122. 122.
    Yamada, M., Kim, S., Egashira, K., Takeya, M., Ikeda, T., Mimura, O., et al. (2003). Molecular mechanism and role of endothelial monocyte chemoattractant protein-1 induction by vascular endothelial growth factor. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1996–2001.PubMedCrossRefGoogle Scholar
  123. 123.
    Vicari, A. P., Ait-Yahia, S., Chemin, K., Mueller, A., Zlotnik, A., & Caux, C. (2000). Antitumor effects of the mouse chemokine 6Ckine/SLC through angiostatic and immunological mechanisms. Journal of Immunology, 165, 1992–2000.Google Scholar
  124. 124.
    Strieter, R. M., Kunkel, S. L., Arenberg, D. A., Burdick, M. D., & Polverini, P. J. (1995). Interferon gamma-inducible protein 10 (IP-10), a member of the C-X-C chemokine family, is an inhibitor of angiogenesis. Biochemical and Biophysical Research Communications, 210, 51–57.PubMedCrossRefGoogle Scholar
  125. 125.
    Lasagni, L., Francalanci, M., Annunziato, F., Lazzeri, E., Giannini, S., Cosmi, L., et al. (2003). An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4. Journal of Experimental Medicine, 197, 1537–1549.PubMedCrossRefGoogle Scholar
  126. 126.
    Ehlert, J. E., Addison, C. A., Burdick, M. D., Kunkel, S. L., & Strieter, R. M. (2004). Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping. Journal of Immunology, 173, 6234–6240.Google Scholar
  127. 127.
    Romagnani, P., Annunziato, F., Lasagni, L., Lazzeri, E., Beltrame, C., Francalanci, M., et al. (2001). Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. Journal of Clinical Investigation, 107, 53–63.PubMedCrossRefGoogle Scholar
  128. 128.
    Salcedo, R., Resau, J. H., Halverson, D., Hudson, E. A., Dambach, M., Powell, D., et al. (2000). Differential expression and responsiveness of chemokine receptors (CXCR1-3) by human microvascular endothelial cells and umbilical vein endothelial cells. FASEB Journal, 14, 2055–2064.PubMedCrossRefGoogle Scholar
  129. 129.
    Soto, H., Wang, W., Strieter, R. M., Copeland, N. G., Gilbert, D. J., Jenkins, N. A., et al. (1998). The CC chemokine 6Ckine binds the CXC chemokine receptor CXCR3. Proceedings of the National Academy of Sciences of the United States of America, 95, 8205–8210.PubMedCrossRefGoogle Scholar
  130. 130.
    Arenberg, D. A., Kunkel, S. L., Polverini, P. J., Morris, S. B., Burdick, M. D., Glass, M. C., et al. (1996). Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases. Journal of Experimental Medicine, 184, 981–992.PubMedCrossRefGoogle Scholar
  131. 131.
    Dhawan, P., & Richmond, A. (2002). Role of CXCL1 in tumorigenesis of melanoma. Journal of Leukocyte Biology, 72, 9–18.PubMedGoogle Scholar
  132. 132.
    Norgauer, J., Metzner, B., & Schraufstatter, I. (1996). Expression and growth-promoting function of the IL-8 receptor beta in human melanoma cells. Journal of Immunology, 156, 1132–1137.Google Scholar
  133. 133.
    Zhu, Y. M., Webster, S. J., Flower, D., & Woll, P. J. (2004). Interleukin-8/CXCL8 is a growth factor for human lung cancer cells. British Journal of Cancer, 91, 1970–1976.PubMedCrossRefGoogle Scholar
  134. 134.
    Xu, L., & Fidler, I. J. (2000). Interleukin 8: An autocrine growth factor for human ovarian cancer. Oncology Research, 12, 97–106.PubMedGoogle Scholar
  135. 135.
    Brew, R., Erikson, J. S., West, D. C., Kinsella, A. R., Slavin, J., & Christmas, S. E. (2000). Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro. Cytokine, 12, 78–85.PubMedCrossRefGoogle Scholar
  136. 136.
    Metzner, B., Hofmann, C., Heinemann, C., Zimpfer, U., Schraufstatter, I., Schopf, E., et al. (1999). Overexpression of CXC-chemokines and CXC-chemokine receptor type II constitute an autocrine growth mechanism in the epidermoid carcinoma cells KB and A431. Oncology Reports, 6, 1405–1410.PubMedGoogle Scholar
  137. 137.
    Suyama, T., Furuya, M., Nishiyama, M., Kasuya, Y., Kimura, S., Ichikawa, T., et al. (2005). Up-regulation of the interferon gamma (IFN-gamma)-inducible chemokines IFN-inducible T-cell alpha chemoattractant and monokine induced by IFN-gamma and of their receptor CXC receptor 3 in human renal cell carcinoma. Cancer, 103, 258–267.PubMedCrossRefGoogle Scholar
  138. 138.
    Goldberg-Bittman, E., Neumark, E., Sagi-Assif, O., Azenshtein, E., Meshel, T., Witz, I. P., et al. (2004). The expression of the chemokine receptor CXCR3 and its ligand, CXCL10, in human breast adenocarcinoma cell lines. Immunology Letters, 92, 171–178.PubMedCrossRefGoogle Scholar
  139. 139.
    Robledo, M. M., Bartolome, R. A., Longo, N., Rodriguez-Frade, J. M., Mellado, M., et al. (2001). Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. Journal of Biological Chemistry, 276, 45098–45105.PubMedCrossRefGoogle Scholar
  140. 140.
    Longo-Imedio, M. I., Longo, N., Trevino, I., Lazaro, P., & Sanchez-Mateos, P. (2005). Clinical significance of CXCR3 and CXCR4 expression in primary melanoma. International Journal of Cancer.Google Scholar
  141. 141.
    Kawada, K., Sonoshita, M., Sakashita, H., Takabayashi, A., Yamaoka, Y., Manabe, T., et al. (2004). Pivotal role of CXCR3 in melanoma cell metastasis to lymph nodes. Cancer Research, 64, 4010–4017.PubMedCrossRefGoogle Scholar
  142. 142.
    Soejima, K., & Rollins, B. J. (2001). A functional IFN-gamma-inducible protein-10/CXCL10-specific receptor expressed by epithelial and endothelial cells that is neither CXCR3 nor glycosaminoglycan. Journal of Immunology, 167, 6576–6582.Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Cell Research and Immunology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations