Cancer and Metastasis Reviews

, Volume 25, Issue 3, pp 315–322 | Cite as

Role of tumor-associated macrophages in tumor progression and invasion

  • Alberto Mantovani
  • Tiziana Schioppa
  • Chiara Porta
  • Paola Allavena
  • Antonio Sica
Article

Abstract

Tumor-Associated Macrophages (TAM) represent the major inflammatory component of the stroma of many tumors, able to affect different aspects of the neoplastic tissue. Many observations indicate that TAM express several M2-associated protumoral functions, including promotion of angiogenesis, matrix remodelling and suppression of adaptive immunity. The protumoral role of TAM in cancer is further supported by clinical studies that found a correlation between the high macrophage content of tumors and poor patient prognosis and by evidence showing that long-term use of non-steroidal anti-inflammatory drugs reduces the risk of several cancers. Here, we discuss evidence supporting the view that TAM represent a unique and distinct M2-skewed myeloid population and a potential target of anti-cancer therapy.

Keywords

Tumor-associated macrophages Tumor Inflammation NF-κB Metastasis Hypoxia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: Back to Virchow? Lancet, 357, 539–545.CrossRefPubMedGoogle Scholar
  2. 2.
    Mantovani, A., Sozzani, S., Locati, M., Allavena, P., & Sica, A. (2002). Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends in Immunology, 23, 549–555.CrossRefPubMedGoogle Scholar
  3. 3.
    Paik, S., Shak, S., Tang, G., Kim, C., Baker, J., Cronin, M., et al. (2004). A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. New England Journal of Medicine, 351, 2817–2826.CrossRefPubMedGoogle Scholar
  4. 4.
    Koehne, C. H. (2004). Dubois RN: COX-2 inhibition and colorectal cancer. Seminars in Oncology, 31, 12–21.CrossRefPubMedGoogle Scholar
  5. 5.
    Voronov, E., Shouval, D. S., Krelin, Y., Cagnano, E., Benharroch, D., Iwakura, Y., et al. (2003). IL-1 is required for tumor invasiveness and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 2645–2650.CrossRefPubMedGoogle Scholar
  6. 6.
    Wyckoff, J., Wang, W., Lin, E. Y., Wang, Y., Pixley, F., Stanley, E. R., et al. (2004). A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors Cancer Research, 64, 7022–7029.CrossRefPubMedGoogle Scholar
  7. 7.
    Pikarsky, E., Porat, R. M., Stein, I., Abramovitch, R., Amit, S., Kasem, S., et al. (2004). NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature, 431, 461–466.CrossRefPubMedGoogle Scholar
  8. 8.
    Greten, F. R., Eckmann, L., Greten, T. F., Park, J. M., Li, Z. W., Egan, L. J., et al. (2004). IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell, 118, 285–296.CrossRefPubMedGoogle Scholar
  9. 9.
    Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.CrossRefPubMedGoogle Scholar
  10. 10.
    Mantovani, A., Sica, A., Sozzani, S., Allavena, P., Vecchi, A., & Locati, M. (2004). The chemokine system in diverse forms of macrophage activation and polarization. Trends in Immunology, 25, 677–686.CrossRefPubMedGoogle Scholar
  11. 11.
    Sher, A., Pearce, E., & Kaye, P. (2003). Shaping the immune response to parasites: Role of dendritic cells. Current Opinion in Immunology, 15, 421–429.CrossRefPubMedGoogle Scholar
  12. 12.
    Balkwill, F., Charles, K. A., & Mantovani, A. (2005). Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell, 7, 211–217.CrossRefPubMedGoogle Scholar
  13. 13.
    Gordon, S. (2003). Alternative activation of macrophages. Natural Reviews. Immunology, 3, 23–35.CrossRefGoogle Scholar
  14. 14.
    Mosser, D. M. (2003). The many faces of macrophage activation. Journal of Leukocyte Biology, 73, 209–212.CrossRefPubMedGoogle Scholar
  15. 15.
    Goerdt, S., & Orfanos, C. E. (1999). Other functions, other genes: Alternative activation of antigen-presenting cells. Immunity, 10, 137–142.CrossRefPubMedGoogle Scholar
  16. 16.
    Mantovani, A., Bottazzi, B., Colotta, F., Sozzani, S., & Ruco, L. (1992). The origin and function of tumor-associated macrophages. Immunology Today, 13, 265–270.CrossRefPubMedGoogle Scholar
  17. 17.
    Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100, 57–70.CrossRefPubMedGoogle Scholar
  18. 18.
    Karin, M., Cao, Y., Greten, F. R., & Li, Z. W. (2002). NF-kappaB in cancer: From innocent bystander to major culprit. Nature Reviews. Cancer, 2, 301–310.CrossRefPubMedGoogle Scholar
  19. 19.
    Mantovani, A. (2005). Cancer: Inflammation by remote control. Nature, 435, 752–753.CrossRefPubMedGoogle Scholar
  20. 20.
    Luo, J. L., Maeda, S., Hsu, L. C., Yagita, H., & Karin, M. (2004). Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression. Cancer Cell, 3, 297–305.CrossRefGoogle Scholar
  21. 21.
    Andela, V. B., Schwarz, E. M., Puzas, J. E., O'Keefe, R. J., & Rosier, R. N. (2000). Tumor metastasis and the reciprocal regulation of prometastatic and antimetastatic factors by nuclear factor kappaB. Cancer Research, 60, 6557–6562.PubMedGoogle Scholar
  22. 22.
    Pahl, H. L. (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 18, 6853–6866.CrossRefPubMedGoogle Scholar
  23. 23.
    Huang, S., Pettaway, C. A., Uehara, H., Bucana, C. D., & Fidler, I. J. (2001). Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene, 20, 4188–4197.CrossRefPubMedGoogle Scholar
  24. 24.
    Baldwin, A. S. Jr. (1996). The NF-kappa B and I kappa B proteins: New discoveries and insights. Annual Review of Immunology, 14, 649–683.CrossRefPubMedGoogle Scholar
  25. 25.
    Ghosh, S., May, M. J., & Kopp, E. B. (1998). NF-kappa B and Rel proteins: Evolutionarily conserved mediators of immune responses. Annual Review of Immunology, 16, 225–260.CrossRefPubMedGoogle Scholar
  26. 26.
    Baldwin, A. S. (2001). Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. Journal of Clinical Investigation, 107, 241–246.PubMedCrossRefGoogle Scholar
  27. 27.
    Wolf, J. S., Chen, Z., Dong, G., Sunwoo, J. B., Bancroft, C. C., Capo, D. E., et al. (2001). IL (interleukin)-1alpha promotes nuclear factor-kappaB and AP-1-induced IL-8 expression, cell survival, and proliferation in head and neck squamous cell carcinomas.Clinical Cancer Research, 7, 1812–1820.PubMedGoogle Scholar
  28. 28.
    Orlowski, R. Z., & Baldwin, A. S., Jr. (2002). NF-kappaB as a therapeutic target in cancer. Trends in Molecular Medicine, 8, 385–389.CrossRefPubMedGoogle Scholar
  29. 29.
    Karin, M., Yamamoto, Y., & Wang, Q. M. (2004). The IKK NF-kappa B system: A treasure trove for drug development. Nat Rev Drug Discov, 3, 17–26.CrossRefPubMedGoogle Scholar
  30. 30.
    Sica, A., Saccani, A., Bottazzi, B., Polentarutti, N., Vecchi, A., van Damme, J., et al. (2000). Autocrine production of IL-10 mediates defective IL-12 production and NF-kappa B activation in tumor-associated macrophages. Journal of Immunology, 164, 762–767.Google Scholar
  31. 31.
    Dinapoli, M. R., Calderon, C. L., & Lopez, D. M. (1996). The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduce expression of the inducible nitric oxide synthase gene. Journal of Experimental Medicine, 183, 1323–1329.CrossRefPubMedGoogle Scholar
  32. 32.
    Ghosh, P., Komschlies, K. L., Cippitelli, M., Longo, D. L., Subleski, J., Ye, J., et al. (1995). Gradual loss of T-helper 1 populations in spleen of mice during progressive tumor growth. Journal of the National Cancer Institute, 87, 1478–1483.PubMedGoogle Scholar
  33. 33.
    Vaupel, P. (2004). The role of hypoxia-induced factors in tumor progression. Oncologist, 9, 10–17.CrossRefPubMedGoogle Scholar
  34. 34.
    Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Natural Reviews. Cancer, 3, 721–732.CrossRefGoogle Scholar
  35. 35.
    Schlappack, O. K., Zimmermann, A., & Hill, R. P. (1991). Glucose starvation and acidosis: Effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. British Journal of Cancer, 64, 663–670.PubMedGoogle Scholar
  36. 36.
    Snyder, S. A., Lanzen, J. L., Braun, R. D., Rosner, G., Secomb, T. W., Biaglow, J., et al. (2001). Simultaneous administration of glucose and hyperoxic gas achieves greater improvement in tumor oxygenation than hyperoxic gas alone. International Journal of Radiation Oncology, Biology, Physics, 51, 494–506.CrossRefPubMedGoogle Scholar
  37. 37.
    Walenta, S., Wetterling, M., Lehrke, M., Schwickert, G., Sundfor, K., Rofstad, E. K., et al. (2000). High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Research, 60, 916–921.PubMedGoogle Scholar
  38. 38.
    Sen, S., Zhou, H., Zhang, R. D., Yoon, D. S., Vakar-Lopez, F., Ito, S., et al. (2002). Amplification/overexpression of a mitotic kinase gene in human bladder cancer. Journal of the National Cancer Institute, 94, 1320–1329.PubMedGoogle Scholar
  39. 39.
    Koong, A. C., Denko, N. C., Hudson, K. M., Schindler, C., Swiersz, L., Koch, C., et al. (2000). Candidate genes for the hypoxic tumor phenotype. Cancer Research, 60, 883–887.PubMedGoogle Scholar
  40. 40.
    Czekay, R. P., Aertgeerts, K., Curriden, S. A., & Loskutoff, D. J. (2003). Plasminogen activator inhibitor-1 detaches cells from extracellular matrices by inactivating integrins. Journal of Cell Biology, 160, 781–791.CrossRefPubMedGoogle Scholar
  41. 41.
    Talks, K. L., Turley, H., Gatter, K. C., Maxwell, P. H., Pugh, C. W., Ratcliffe, P. J., et al. (2000). The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. American Journal of Pathology, 157, 411–421.PubMedGoogle Scholar
  42. 42.
    Knowles, H., Leek, R., & Harris, A. L. (2004). Macrophage infiltration and angiogenesis in human malignancy. Novartis Foundation Symposium, 256, 189–200.PubMedGoogle Scholar
  43. 43.
    Cramer, T., Yamanishi, Y., Clausen, B. E., Forster, I., Pawlinski, R., Mackman, N., et al. (2003). HIF-1α is essential for myeloid cell-mediated inflammation. Cell, 112, 645–657.CrossRefPubMedGoogle Scholar
  44. 44.
    Schioppa, T., Uranchimeg, B., Saccani, A., Biswas, S. K., Doni, A., Rapisarda, A., et al. (2003). Regulation of the chemokine receptor CXCR4 by hypoxia. Journal of Experimental Medicine, 198, 1391–1402.CrossRefPubMedGoogle Scholar
  45. 45.
    Ceradini, D. J., Kulkarni, A. R., Callaghan, M. J., Tepper, O. M., Bastidas, N., Kleinman, M. E., et al. (2004). Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Natural Medicine, 10, 858–864.CrossRefGoogle Scholar
  46. 46.
    Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.CrossRefPubMedGoogle Scholar
  47. 47.
    Pennacchietti, S., Michieli, P., Galluzzo, M., Mazzone, M., Giordano, S., & Comoglio, P. M. (2003). Hypoxia promotes invasive growth by transcriptional activation of the met protooncogene. Cancer Cell, 3, 347–361.CrossRefPubMedGoogle Scholar
  48. 48.
    Giaccia, A., Siim, B. G., & Johnson, R. S. (2003). HIF-1 as a target for drug development. Nat Rev Drug Discov, 2, 803–811.CrossRefPubMedGoogle Scholar
  49. 49.
    Folkman, J. (1995). Angiogenesis in cancer, vascular, rheumatoid and other disease. Natural Medicines, 1, 27–31.CrossRefGoogle Scholar
  50. 50.
    Hanahan, D., & Folkman, J. (1996). Patterns of emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353–364.CrossRefPubMedGoogle Scholar
  51. 51.
    Crowther, M., Brown, N. J., Bishop, E. T., & Lewis, C. E. (2001). Microenvironmental influence on macrophage regulation of angiogenesis in wounds and malignant tumors. Journal of Leukocyte Biology, 70, 478–490.PubMedGoogle Scholar
  52. 52.
    Salcedo, R., Wasserman, K., Young, H. A., Grimm, M. C., Howard, O. M., Anver, M. R., et al. (1999). Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: In vivo neovascularization induced by stromal-derived factor-1alpha. American Journal of Pathology, 154, 1125–1135.PubMedGoogle Scholar
  53. 53.
    Cursiefen, C., Chen, L., Borges, L. P., Jackson, D., Cao, J., Radziejewski, C., et al. (2004). VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. Journal of Clinical Investigation, 113, 1040–1050.CrossRefPubMedGoogle Scholar
  54. 54.
    Schoppmann, S. F., Birner, P., Stockl, J., Kalt, R., Ullrich, R., Caucig, C., et al. (2002). Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphangiogenesis. American Journal of Pathology, 161, 947–956.PubMedGoogle Scholar
  55. 55.
    Hotchkiss, K. A., Ashton, A. W., Klein, R. S., Lenzi, M. L., Zhu, G. H., & Schwartz, E. L. (2003). Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration. Cancer Research, 63, 527–533.PubMedGoogle Scholar
  56. 56.
    Azenshtein, E., Luboshits, G., Shina, S., Neumark, E., Shahbazian, D., Weil, M., et al. (2002). The CC chemokine RANTES in breast carcinoma progression: Regulation of expression and potential mechanisms of promalignant activity. Cancer Research, 62, 1093–1102.PubMedGoogle Scholar
  57. 57.
    Haghnegahdar, H., Du, J., Wang, D., Strieter, R. M., Burdick, M. D., Nanney, L. B., et al. (2000). The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma. Journal of Leukocyte Biology, 67, 53–62.PubMedGoogle Scholar
  58. 58.
    Ueno, T., Toi, M., Saji, H., Muta, M., Bando, H., Kuroi, K., et al. (2000). Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clinical Cancer Research, 6, 3282–3289.PubMedGoogle Scholar
  59. 59.
    Bonizzi, G., & Karin, M. (2004). The two NF-kappaB activation pathways and their role in innate and adaptive immunity. Trends in Immunology, 25, 280–288.CrossRefPubMedGoogle Scholar
  60. 60.
    Li, Q., & Verma, I. M. (2002). NF-kappaB regulation in the immune system. Nature reviews. Immunology, 2, 725–734.CrossRefPubMedGoogle Scholar
  61. 61.
    Moore, R. J., Owens, D. M., Stamp, G., Arnott, C., Burke, F., East, N., et al. (1999). Tumour necrosis factor-a deficient mice are resistant to skin carcinogenesis. Natural Medicines, 5, 828–831.CrossRefGoogle Scholar
  62. 62.
    Hagemann, T., Robinson, S. C., Schulz, M., Trumper, L., Balkwill, F. R., & Binder, C. (2004). Enhanced invasiveness of breast cancer cell lines upon co-cultivation with macrophages is due to TNF-α dependent up-regulation of matrix metalloproteases. Carcinogenesis, 25, 1543–1549.CrossRefPubMedGoogle Scholar
  63. 63.
    Pollard, Jeffrey W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4, 71–78.CrossRefPubMedGoogle Scholar
  64. 64.
    Lin, E. Y., Nguyen, A. V., Russell, R. G., & Pollard, J. W. (2001). Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy. Journal of Experimental Medicine, 193, 727–740.CrossRefPubMedGoogle Scholar
  65. 65.
    Hiratsuka, S., Nakamura, K., Iwai, S., Murakami, M., Itoh, T., Kijima, H., et al. (2002). MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis. Cancer Cell, 2, 289–300.CrossRefPubMedGoogle Scholar
  66. 66.
    Grimshaw, M. J., Wilson, J. L., & Balkwill, F. R. (2002). Endothelin-2 is a macrophage chemoattractant: Implications for macrophage distribution in tumors. Europrean Journal of Immunology, 32, 2393–2400.CrossRefGoogle Scholar
  67. 67.
    Grimshaw, M. J. (2005). Endothelins in breast tumour cell invasion. Cancer Letter, 222, 129–138.CrossRefGoogle Scholar
  68. 68.
    Browatzki, M., Pfeiffer, C. A., Schmidt, J., & Kranzhofer, R. (2005). Endothelin-1 induces CD40 but not IL-6 in human monocytes via the proinflammatory transcription factor NF-kappaB. European Journal of Medical Research, 10, 197–201.PubMedGoogle Scholar
  69. 69.
    Spinella, F., Rosano, L., Di Castro, V., Natali, P. G., & Bagnato, A. (2002). Endothelin-1 induces vascular endothelial growth factor by increasing hypoxia-inducible factor-1alpha in ovarian carcinoma cells. Journal of Biological Chemistry, 277, 27850–27855.CrossRefPubMedGoogle Scholar
  70. 70.
    Leek, R. D., & Harris, A. L. (2002). Tumor-associated macrophages in breast cancer. Journal of Mammary Gland Biology and Neoplasia, 7, 177–189.CrossRefPubMedGoogle Scholar
  71. 71.
    O'Sullivan, C., & Lewis, C. E. (1994). Tumour-associated leucocytes: Friends or foes in breast carcinoma. Journal of Pathology, 172, 229–235.CrossRefPubMedGoogle Scholar
  72. 72.
    Lin, E. Y., Gouon-Evans, V., Nguyen, A. V., & Pollard, J. W. (2002). The macrophage growth factor CSF-1 in mammary gland development and tumor progression. Journal of Mammary Gland Biology and Neoplasia, 7, 147–162.CrossRefPubMedGoogle Scholar
  73. 73.
    Ishikawa, S., Egami, H., Kurizaki, T., Akagi, J., Tamori, Y., Yoshida, N., et al. (2003). Identification of genes related to invasion and metastasis in pancreatic cancer by cDNA representational difference analysis. Journal of Experimental and Clinical Cancer Research, 22, 299–306.Google Scholar
  74. 74.
    Eubank, T. D., Galloway, M., Montague, C. M., Waldman, W. J., Marsh, C. B. (2003). M-CSF induces vascular endothelial growth factor production and angiogenic activity from human monocytes. Journal of Immunology, 171, 2637–2643.Google Scholar
  75. 75.
    Hildenbrand, R., Dilger, I., Horlin, A., & Stutte, H. J. (1995). Urokinase and macrophages in tumour angiogenesis. British Journal of Cancer, 72, 818–823.PubMedGoogle Scholar
  76. 76.
    Klimetzek, V., & Sorg, C. (1977). Lymphokine-induced secretion of plasminogen activator by murine macrophages. European Journal of Immunology, 7, 185–187.PubMedGoogle Scholar
  77. 77.
    Ahmed, F., Wyckoff, J., Lin, E. Y., Wang, W., Wang, Y., Hennighausen L., et al. (2002). GFP expression in the mammary gland for imaging of mammary tumor cells in transgenic mice. Cancer Research, 62, 7166–7169.PubMedGoogle Scholar
  78. 78.
    Goswami, S., Sahai, E., Wyckoff, J. B., Cammer, M., Cox, D., Pixley, F. J., et al. (2005). Macrophages promote the invasion of breast carcinoma cells via a colony-stimulating factor-1/epidermal growth factor paracrine loop. Cancer Research, 65, 5278–5283.CrossRefPubMedGoogle Scholar
  79. 79.
    Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–490.CrossRefPubMedGoogle Scholar
  80. 80.
    Locati, M., Deuschle, U., Massardi, M. L., Martinez, F. O., Sironi, M., Sozzani, S., et al. (2002). Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes. Journal of Immunology, 168, 3557–3562.Google Scholar
  81. 81.
    Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by l-arginine metabolism. Nature Reviews. Immunology, 5, 641–654.CrossRefPubMedGoogle Scholar
  82. 82.
    de Visser, K. E., Korets, L. V., & Coussens, L. M. (2005). De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell, 7, 411–423.CrossRefPubMedGoogle Scholar
  83. 83.
    Grohmann, U., Fallarino, F., & Puccetti, P. (2003). Tolerance, DCs and tryptophan: Much ado about IDO. Trends in Immunology, 24, 242–248.CrossRefPubMedGoogle Scholar
  84. 84.
    Muller, A. J., DuHadaway, J. B., Donover, P. S., Sutanto-Ward, E., & Prendergast, G. C. (2005). Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Natural Medicines, 11, 312–319.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Alberto Mantovani
    • 1
    • 2
  • Tiziana Schioppa
    • 3
  • Chiara Porta
    • 1
  • Paola Allavena
    • 1
  • Antonio Sica
    • 1
  1. 1.Istituto Clinico HumanitasRozzano, MilanItaly
  2. 2.Centro di Eccellenza per l’Innovazione Diagnostica e Terapeutica, Institute of PathologyState University of MilanMilanItaly
  3. 3.Istituto di Ricerche Farmacologiche Mario NegriMilanItaly

Personalised recommendations