Cancer and Metastasis Reviews

, Volume 25, Issue 2, pp 243–252

Inhibitors of growth factor receptors, signaling pathways and angiogenesis as therapeutic molecular agents

  • Jocelyn Holash
  • Gavin Thurston
  • John S. Rudge
  • George D. Yancopoulos
  • Alex A. Adjei
  • Gabriele Bergers
  • Bronislaw Pytowski
  • Mark Pegram
  • Michael S. Gordon
Article
  • 144 Downloads

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adjei AA, Rowinsky EK: Novel anticancer agents in clinical development. Cancer Biol Ther 2(4 Suppl 1): S5–15, 2003PubMedGoogle Scholar
  2. 2.
    Chen EX, Siu LL: Development of molecular targeted anticancer agents: Successes, failures and future directions. Curr Pharm Des 11(2): 265–272, 2005PubMedCrossRefGoogle Scholar
  3. 3.
    Lyons JF, Wilhelm S, Hibner B, Bollag G: Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 8(3): 219–225, 2001PubMedCrossRefGoogle Scholar
  4. 4.
    Strumberg D, Schuehly U, Moeller J, Hedley D, Hilger R, Stellberg W, Richly H, Heinig R, Ahr G, Wensing G, Kuhlmann J, Schuelen ME, Seeber S: West German Cancer Center/University of Essen, Essen, Germany; Bayer AG, Wuppertal, Germany; Princess Margaret Hospital, University of Toronto, Toronto, Canada.: Phase I clinical, pharmacokinetic, and pharmacodynamic study of the Raf kinase inhibitor BAY 43-9006 in patients with locally advanced or metastatic cancer. Proc Am Soc Clin Oncol 20(abstr 330.), 2001Google Scholar
  5. 5.
    Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA: Mutations of the BRAF gene in human cancer. Nature 417(6892): 949–954, 2002PubMedCrossRefGoogle Scholar
  6. 6.
    Hidalgo M, Rowinsky E, Erlichman C, et al.: Phase I and pharmocological study of CCI-779, a cell cycle inhibitor. Clin Cancer Res 6(suppl): 413, 2000Google Scholar
  7. 7.
    Raymond E, Alexandre J, Depenbrock H, Mekhaldi S, Angevin E, Hanauske A, Baudin E, Escudier B, Frisch J, Boni J, Armand JP: CCI-779, a rapamycin analog with antitumor activity: A Phase I study utilizing a weekly schedule. Proc Am Soc Clin Oncol 19 (abstr): 728, 2000Google Scholar
  8. 8.
    Read MA, Neish AS, Luscinskas FW, Palombella VJ, Maniatis T, Collins T: The proteasome pathway is required for cytokine-induced endothelial-leukocyte adhesion molecule expression. Immunity 2(5): 493–506, 1995PubMedCrossRefGoogle Scholar
  9. 9.
    Palombella VJ, Rando OJ, Goldberg AL, Maniatis T: The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78(5): 773–785, 1994PubMedCrossRefGoogle Scholar
  10. 10.
    Adams J: Proteasome inhibitors as new anticancer drugs. Curr Opin Oncol 14(6): 628–634, 2002PubMedCrossRefGoogle Scholar
  11. 11.
    Okano J, Gaslightwall I, Birnbaum M, Rustgi A, Nakagawa H: Akt/Protein Kinase B isoforms are differentially regulated by epidermal growth factor stimulation. J Biol Chem 275: 30934–30942, 2000PubMedCrossRefGoogle Scholar
  12. 12.
    Haluska P, Adjei AA: Receptor tyrosine kinase inhibitors. Curr Opin Investig Drugs 2(2): 280–286, 2001PubMedGoogle Scholar
  13. 13.
    Dy GK, Haluska P, Adjei AA: Novel pharmacological agents in clinical development for solid tumours. Expert Opin Investig Drugs 10(12): 2059–2088, 2001PubMedCrossRefGoogle Scholar
  14. 14.
    Senger DR, Perruzzi CA, Feder J, Dvorak HF: A highly conserved vascular permeability factor secreted by a variety of human and rodent tumor cell lines. Cancer Res 46(11): 5629–5632, 1986PubMedGoogle Scholar
  15. 15.
    Senger DR, Connolly DT, Van de Water L, Feder J, Dvorak HF: Purification and NH2-terminal amino acid sequence of guinea pig tumor-secreted vascular permeability factor. Cancer Res 50(6): 1774–1778, 1990PubMedGoogle Scholar
  16. 16.
    Ferrara N, Henzel WJ: Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells. Biochem Biophys Res Commun 161(2): 851–858, 1989PubMedCrossRefGoogle Scholar
  17. 17.
    Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N: Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935): 1306–1309, 1989PubMedGoogle Scholar
  18. 18.
    Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O'Shea KS, Powell-Braxton L, Hillan KJ, Moore MW: Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380(6573): 439–442, 1996PubMedCrossRefGoogle Scholar
  19. 19.
    Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23): 2335–2342, 2004PubMedCrossRefGoogle Scholar
  20. 20.
    Economides AN, Carpenter LR, Rudge JS, Wong V, Koehler-Stec EM, Hartnett C, Pyles EA, Xu X, Daly TJ, Young MR, Fandl JP, Lee F, Carver S, McNay J, Bailey K, Ramakanth S, Hutabarat R, Huang TT, Radziejewski C, Yancopoulos GD, Stahl N: Cytokine traps: Multi-component, high-affinity blockers of cytokine action. Nat Med 9(1): 47–52, 2003PubMedCrossRefGoogle Scholar
  21. 21.
    Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS: VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99(17): 11393–11398, 2002PubMedCrossRefGoogle Scholar
  22. 22.
    Fukasawa M, Korc M: Vascular endothelial growth factor-trap suppresses tumorigenicity of multiple pancreatic cancer cell lines. Clin Cancer Res 10(10): 3327–3332, 2004PubMedCrossRefGoogle Scholar
  23. 23.
    Huang J, Frischer JS, Serur A, Kadenhe A, Yokoi A, McCrudden KW, New T, O'Toole K, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Yamashiro DJ, Kandel JJ: Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc Natl Acad Sci USA 100(13): 7785–7790, 2003PubMedCrossRefGoogle Scholar
  24. 24.
    Byrne AT, Ross L, Holash J, Nakanishi M, Hu L, Hofmann JI, Yancopoulos GD, Jaffe RB: Vascular endothelial growth factor-trap decreases tumor burden, inhibits ascites, and causes dramatic vascular remodeling in an ovarian cancer model. Clin Cancer Res 9(15): 5721–5728, 2003PubMedGoogle Scholar
  25. 25.
    Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN, Auerbach W, Poueymirou WT, Adams NC, Rojas J, Yasenchak J, Chernomorsky R, Boucher M, Elsasser AL, Esau L, Zheng J, Griffiths JA, Wang X, Su H, Xue Y, Dominguez MG, Noguera I, Torres R, Macdonald LE, Stewart AF, DeChiara TM, Yancopoulos GD: High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21(6): 652–659, 2003PubMedCrossRefGoogle Scholar
  26. 26.
    Shawber CJ, Kitajewski J: Notch function in the vasculature: Insights from zebrafish, mouse and man. Bioessays 26(3): 225–234, 2004PubMedCrossRefGoogle Scholar
  27. 27.
    Gale NW, Dominguez MG, Noguera I, Pan L, Hughes V, Valenzuela DM, Murphy AJ, Adams NC, Lin HC, Holash J, Thurston G, Yancopoulos GD: Haploinsufficiency of delta-like 4 ligand results in embryonic lethality due to major defects in arterial and vascular development. Proc Natl Acad Sci USA 101(45): 15949–15954, 2004PubMedCrossRefGoogle Scholar
  28. 28.
    Dvorak HF: Vascular permeability factor/vascular endothelial growth factor: A critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. J Clin Oncol 20(21): 4368–4380, 2002PubMedCrossRefGoogle Scholar
  29. 29.
    Heldin CH, Rubin K, Pietras K, Ostman A: High interstitial fluid pressure—an obstacle in cancer therapy. Nat Rev Cancer 4(10): 806–813, 2004PubMedCrossRefGoogle Scholar
  30. 30.
    Motzer R, Rini B, Michaelson M, et al.: SU011248, a novel tyrosine kinase inhibitor, shows antihumor activity in second-line therapy for patients with metastatic renal cell carcinoma: Results of phase 2 trial. Proc ASCO 22(14S): 4500, 2004Google Scholar
  31. 31.
    Ratain M, Flaherty K, Stadler W, et al.: Preliminary antitumor activity of BAY 43–9006 in metastatic renal cell carcinoma and other advanced refractory solid tumors in a phase II randomized discontinuation trial (RDT). Proc ASCO 22(14S): 4501, 2004Google Scholar
  32. 32.
    Cleaver O, Melton DA: Endothelial signaling during development. Nat Med 9(6): 661–668, 2003PubMedCrossRefGoogle Scholar
  33. 33.
    Sims DE: Diversity within pericytes. Clin Exp Pharmacol Physiol 27(10): 842–846, 2000PubMedCrossRefGoogle Scholar
  34. 34.
    Gerhardt H, Betsholtz C: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res, 2003Google Scholar
  35. 35.
    Yancopoulos GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J: Vascular-specific growth factors and blood vessel formation. Nature 407(6801): 242–248, 2000PubMedCrossRefGoogle Scholar
  36. 36.
    Bergers G, Benjamin LE: Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3(6): 401–410, 2003PubMedCrossRefGoogle Scholar
  37. 37.
    Hellstrom M, Kalen M, Lindahl P, Abramsson A, Betsholtz C: Role of PDGF-B and PDGFR-beta in recruitment of vascular smooth muscle cells and pericytes during embryonic blood vessel formation in the mouse. Development 126(14): 3047–3055, 1999PubMedGoogle Scholar
  38. 38.
    Lindahl P, Bostrom H, Karlsson L, Hellstrom M, Kalen M, Betsholtz C: Role of platelet-derived growth factors in angiogenesis and alveogenesis. Curr Top Pathol 93: 27–33, 1999PubMedGoogle Scholar
  39. 39.
    Leveen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C: Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev 8(16): 1875–1887, 1994PubMedGoogle Scholar
  40. 40.
    Lindahl P, Johansson B, Leveen P, Betsholtz C: Pericyte loss and microaneurysm formation inPDGF-B-deficient mice. Science 126: 3047–3055, 1997Google Scholar
  41. 41.
    Soriano P: Abnormal kidney development and hematological disorders in PDGF beta-receptor mutant mice. Genes Dev 8(16): 1888–1896, 1994PubMedGoogle Scholar
  42. 42.
    Carmeliet P: Angiogenesis in health and disease. Nat Med 9(6): 653–660, 2003PubMedCrossRefGoogle Scholar
  43. 43.
    Baluk P, Hashizume H, McDonald DM: Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1): 102–11, 2005PubMedCrossRefGoogle Scholar
  44. 44.
    Folkman J: Tumor angiogenesis. In: Al He (ed) Cancer Medicine, 5th ed, vol In press. B C Decker, Hamilton, Ontario, 2000Google Scholar
  45. 45.
    Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E: Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal [see comments]. J Clin Invest 103(2): 159–165, 1999PubMedCrossRefGoogle Scholar
  46. 46.
    Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM: Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3): 985–1000, 2002PubMedGoogle Scholar
  47. 47.
    Bergers G, Song S: The role of pericytes in blood-vessel formation and maintenance. Neuro-oncol 7(4): 452–464, 2005PubMedCrossRefGoogle Scholar
  48. 48.
    Abramsson A, Berlin O, Papayan H, Paulin D, Shani M, Betsholtz C: Analysis of mural cell recruitment to tumor vessels. Circulation 105(1): 112–117, 2002PubMedCrossRefGoogle Scholar
  49. 49.
    Bergers G, Song S, Meyer-Morse N, Bergsland E, Hanahan D: Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors. J Clin Invest 111(9): 1287–1295, 2003PubMedCrossRefGoogle Scholar
  50. 50.
    Reinmuth N, Liu W, Jung YD, Ahmad SA, Shaheen RM, Fan F, Bucana CD, McMahon G, Gallick GE, Ellis LM: Induction of VEGF in perivascular cells defines a potential paracrine mechanism for endothelial cell survival. Faseb J 15(7): 1239–1241, 2001PubMedGoogle Scholar
  51. 51.
    Shaheen RM, Tseng WW, Davis DW, Liu W, Reinmuth N, Vellagas R, Wieczorek AA, Ogura Y, McConkey DJ, Drazan KE, Bucana CD, McMahon G, Ellis LM.: Tyrosine kinase inhibition of multiple angiogenic growth factor receptors improves survival in mice bearing colon cancer liver metastases by inhibition of endothelial cell survival mechanisms. Cancer Res 61(4): 1464–1468, 2001PubMedGoogle Scholar
  52. 52.
    Ozerdem U: Targeting of pericytes diminishes neovascularization and lymphangiogenesis in prostate cancer. Prostate 66(3): 294–304, 2006PubMedCrossRefGoogle Scholar
  53. 53.
    Song S, Ewald AJ, Stallcup W, Werb Z, Bergers G: PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nat Cell Biol 7(9): 870–879, 2005PubMedCrossRefGoogle Scholar
  54. 54.
    Alitalo K, Carmeliet P: Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell 1(3): 219–227, 2002PubMedCrossRefGoogle Scholar
  55. 55.
    Joukov V, Sorsa T, Kumar V, Jeltsch M, Claesson-Welsh L, Cao Y, Saksela O, Kalkkinen N, Alitalo K: Proteolytic processing regulates receptor specificity and activity of VEGF-C. Embo J 16(13): 3898–3911, 1997PubMedCrossRefGoogle Scholar
  56. 56.
    Stacker SA, Caesar C, Baldwin ME, Thornton GE, Williams RA, Prevo R, Jackson DG, Nishikawa S, Kubo H, Achen MG: VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7(2): 186–191, 2001PubMedCrossRefGoogle Scholar
  57. 57.
    Skobe M, Hawighorst T, Jackson DG, Prevo R, Janes L, Velasco P, Riccardi L, Alitalo K, Claffey K, Detmar M: Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7(2): 192–198, 2001PubMedCrossRefGoogle Scholar
  58. 58.
    Karpanen T, Egeblad M, Karkkainen MJ, Kubo H, Yla-Herttuala S, Jaattela M, Alitalo K: Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61(5): 1786–1790, 2001PubMedGoogle Scholar
  59. 59.
    Persaud K, Tille JC, Liu M, Zhu Z, Jimenez X, Pereira DS, Miao HQ, Brennan LA, Witte L, Pepper MS, Pytowski B: Involvement of the VEGF receptor 3 in tubular morphogenesis demonstrated with a human anti-human VEGFR-3 monoclonal antibody that antagonizes receptor activation by VEGF-C. J Cell Sci 117(Pt 13): 2745–2756, 2004PubMedCrossRefGoogle Scholar
  60. 60.
    Pytowski B, Goldman J, Persaud K, Wu Y, Witte L, Hicklin DJ, Skobe M, Boardman KC, Swartz MA: Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J Natl Cancer Inst 97(1): 14–21, 2005PubMedCrossRefGoogle Scholar
  61. 61.
    Roberts N, Cassella M, Kloos B, et al.: Distinct roles for VEGFR-2 and VEGFR-3 activation in tumor lymphangiogenesis and metastasis to lymph nodes and distant organs. Cancer Research 66: 2650–2657 2006Google Scholar
  62. 62.
    Cursiefen C, Ikeda S, Nishina PM, Smith RS, Ikeda A, Jackson D, Mo JS, Chen L, Dana MR, Pytowski B, Kruse FE, Streilein JW: Spontaneous corneal hem- and lymphangiogenesis in mice with destrin-mutation depend on VEGFR3 signaling. Am J Pathol 166(5): 1367–1377, 2005PubMedGoogle Scholar
  63. 63.
    Baluk P, Tammela T, Ator E, Lyubynska N, Achen MG, Hicklin DJ, Jeltsch M, Petrova TV, Pytowski B, Stacker SA, Yla-Herttuala S, Jackson DG, Alitalo K, McDonald DM: Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest 115(2): 247–257, 2005PubMedCrossRefGoogle Scholar
  64. 64.
    Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A: Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244(4905): 707–712, 1989PubMedGoogle Scholar
  65. 65.
    Pegram M, Slamon D: Biological rationale for HER2/neu (c-erbB2) as a target for monoclonal antibody therapy. Semin Oncol 27(5 Suppl 9): 13–19, 2000PubMedGoogle Scholar
  66. 66.
    Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM: Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89(10): 4285–4289, 1992PubMedCrossRefGoogle Scholar
  67. 67.
    Pegram M, Hsu S, Lewis G, Pietras R, Beryt M, Sliwkowski M, Coombs D, Baly D, Kabbinavar F, Slamon D: Inhibitory effects of combinations of HER-2/neu antibody and chemotherapeutic agents used for treatment of human breast cancers. Oncogene 18(13): 2241–2251, 1999PubMedCrossRefGoogle Scholar
  68. 68.
    Pegram M, Baly D, Wirth C, et al.: Antibody dependant cell-mediated cytotoxicity in breast cancer patients in phase III clinical trials of a humanized anti-HER-2 antibody. Proc Am Assoc Canc Res 38: 602, 1997Google Scholar
  69. 69.
    Pegram MD, Konecny GE, O'Callaghan C, Beryt M, Pietras R, Slamon DJ: Rational combinations of trastuzumab with chemotherapeutic drugs used in the treatment of breast cancer. J Natl Cancer Inst 96(10): 739–749, 2004PubMedGoogle Scholar
  70. 70.
    Slamon D: Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. New England Journal of Medicine 344: 783–792, 2001PubMedCrossRefGoogle Scholar
  71. 71.
    Marty M, Cognetti F, Maraninchi D, Snyder R, Mauriac L, Tubiana-Hulin M, Chan S, Grimes D, Anton A, Lluch A, Kennedy J, O'Byrne K, Conte P, Green M, Ward C, Mayne K, Extra JM: Randomized phase II trial of the efficacy and safety of trastuzumab combined with docetaxel in patients with human epidermal growth factor receptor 2-positive metastatic breast cancer administered as first-line treatment: The M77001 study group. J Clin Oncol 23(19): 4265–4274, 2005PubMedCrossRefGoogle Scholar
  72. 72.
    Lu Y, Zi X, Pollak M: Molecular mechanisms underlying IGF-I-induced attenuation of the growth-inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int J Cancer 108(3): 334–341, 2004PubMedCrossRefGoogle Scholar
  73. 73.
    Yakes FM, Chinratanalab W, Ritter CA, King W, Seelig S, Arteaga CL: Herceptin-induced inhibition of phosphatidylinositol-3 kinase and Akt Is required for antibody-mediated effects on p27, cyclin D1, and antitumor action. Cancer Res 62(14): 4132–4141, 2002PubMedGoogle Scholar
  74. 74.
    Price-Schiavi SA, Jepson S, Li P, Arango M, Rudland PS, Yee L, Carraway KL: Rat Muc4 (sialomucin complex) reduces binding of anti-ErbB2 antibodies to tumor cell surfaces, a potential mechanism for herceptin resistance. Int J Cancer 99(6): 783–791, 2002PubMedCrossRefGoogle Scholar
  75. 75.
    Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D: PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell 6(2): 117–127, 2004PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Jocelyn Holash
    • 1
  • Gavin Thurston
    • 1
  • John S. Rudge
    • 1
  • George D. Yancopoulos
    • 1
  • Alex A. Adjei
    • 2
  • Gabriele Bergers
    • 3
  • Bronislaw Pytowski
    • 4
  • Mark Pegram
    • 5
  • Michael S. Gordon
    • 6
  1. 1.Regeneron PharmaceuticalsTarrytownUSA
  2. 2.Mayo Clinic FoundationRochesterUSA
  3. 3.Department of Neurological Surgery, Brain Tumor Research Center and UCSF Comprehensive Cancer CenterUniversity of CaliforniaSan FranciscoUSA
  4. 4.ImClone SystemsNew YorkUSA
  5. 5.Department of Medical OncologyUCLALos AngelesUSA
  6. 6.Premiere Oncology of ArizonaScottsdaleUSA

Personalised recommendations