Advertisement

Cancer and Metastasis Reviews

, Volume 25, Issue 1, pp 45–56 | Cite as

Reciprocal interactions between adhesion receptor signaling and MMP regulation

  • H. G. Munshi
  • M. S. StackEmail author
Article

Abstract

A predominant characteristic of metastatic cells is the ability to invade host tissues and establish distant metastatic foci. Release of metastatic cells from a primary tumor results from disruption of tissue architecture and requires reversible modulation of cell-matrix and cell-cell contacts, cytoskeletal rearrangement, and acquisition of enhanced proteolytic potential. Malignant cells produce a spectrum of extracellular proteinases including matrix metalloproteinases (MMPs) that process extracellular matrix components, cell surface proteins, and immune modulators. Dysregulated proteolysis has been implicated in tumor invasion and metastasis in multiple model systems. This review will focus on data that highlight the influence of cell-matrix and cell-cell interactions and their associated signal transduction pathways on proteinase regulation. These data highlight cell adhesion signaling as a mechanism for a versatile cellular proteolytic response to changing microenvironmental cues.

Keywords

Matrix metalloproteinase Integrin Focal adhesion kinase E-cadherin β-catenin Snail 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lynch CC, Matrisian LM: Matrix metalloproteinases in tumor-host cell communication. Differentiation 70: 561–573, 2002PubMedCrossRefGoogle Scholar
  2. 2.
    DeClerck YA, Mercurio AM, Stack MS, Chapman HA, Zutter MM, Muschel RJ, Raz A, Matrisian LM, Sloane BF, Noel A, Hendrix MJ, Coussens L, Padarathsingh M: Proteases, extracellular matrix, and cancer: A workshop of the path B study section. Am J Pathol 164: 1131–1139, 2004PubMedGoogle Scholar
  3. 3.
    Sternlicht MD, Werb Z: How matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol 17: 463–516, 2001PubMedCrossRefGoogle Scholar
  4. 4.
    Overall CM, Lopez-Otin C: Strategies for MMP inhibition in cancer: Innovations for the post-trial era. Nat Rev Cancer 2: 657–672, 2002PubMedCrossRefGoogle Scholar
  5. 5.
    Wolf, K, Mazo, I, Leung, H, Engelke, K, von Andrian UH, Deryugina EI, Strongin AY, Brocker EB, Friedl P: Compensation mechanism in tumor cell migration: mesenchymal-amoeboid transition after blocking of pericellular proteolysis. J Cell Biol 160: 267–277, 2003PubMedCrossRefGoogle Scholar
  6. 6.
    Hotary KB, Allen ED, Brooks PC, Datta NS, Long MW, Weiss SJ: Membrane type I matrix metalloproteinase usurps tumor growth control imposed by the three-dimensional extracellular matrix. Cell 114: 33–45, 2003PubMedCrossRefGoogle Scholar
  7. 7.
    Westermarck J, Kahari VM: Regulation of matrix metalloproteinase expression in tumor invasion. Faseb J 13: 781–792, 1999PubMedGoogle Scholar
  8. 8.
    Vincenti MP, Brinckerhoff CE: Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: Integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res 4: 157–164, 2002PubMedCrossRefGoogle Scholar
  9. 9.
    Yamada KM, Miyamoto S: Integrin transmembrane signaling and cytoskeletal control. Curr Opin Cell Biol 7: 681–689, 1995PubMedCrossRefGoogle Scholar
  10. 10.
    Schwartz MA, Ingber DE: Integrating with integrins. Mol Biol Cell 5: 389–393, 1994PubMedGoogle Scholar
  11. 11.
    Martin, KH, Slack JK, Boerner SA, Martin CC, Parsons JT: Integrin connections map: To infinity and beyond. Science 296: 1652–1653, 2002PubMedCrossRefGoogle Scholar
  12. 12.
    Moro L, Venturino M, Bozzo C, Silengo L, Altruda F, Beguinot L, Tarone G, Defilippi P: Integrins induce activation of EGF receptor: Role in MAP kinase induction and adhesion-dependent cell survival. Embo J 17: 6622–6632, 1998PubMedCrossRefGoogle Scholar
  13. 13.
    Mariotti A, Kedeshian PA, Dans M, Curatola AM, Gagnoux-Palacios L, Giancotti FG: EGF-R signaling through Fyn kinase disrupts the function of integrin alpha6beta4 at hemidesmosomes: role in epithelial cell migration and carcinoma invasion. J Cell Biol 155: 447–458, 2001PubMedCrossRefGoogle Scholar
  14. 14.
    Deugnier MA, Faraldo MM, Rousselle P, Thiery JP, Glukhova MA: Cell-extracellular matrix interactions and EGF are important regulators of the basal mammary epithelial cell phenotype. J Cell Sci 112(Pt 7): 1035–1044, 1999PubMedGoogle Scholar
  15. 15.
    Moro L, Dolce L, Cabodi S, Bergatto E, Erba EB, Smeriglio M, Turco E, Retta SF, Giuffrida MG, Venturino M, Godovac-Zimmermann J, Conti A, Schaefer E, Beguinot L, Tacchetti C, Gaggini P, Silengo L, Tarone G, Defilippi P: Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol Chem 277: 9405–9414, 2002PubMedCrossRefGoogle Scholar
  16. 16.
    Miyamoto S, Teramoto H, Coso OA, Gutkind JS, Burbelo PD, Akiyama SK, Yamada KM: Integrin function: Molecular hierarchies of cytoskeletal and signaling molecules. J Cell Biol 131: 791–805, 1995PubMedCrossRefGoogle Scholar
  17. 17.
    Miyamoto S, Akiyama SK, Yamada KM: Synergistic roles for receptor occupancy and aggregation in integrin transmembrane function. Science 267: 883–885, 1995PubMedGoogle Scholar
  18. 18.
    Ingber DE: Cancer as a disease of epithelial-mesenchymal interactions and extracellular matrix regulation. Differentiation 70: 547–560, 2002PubMedCrossRefGoogle Scholar
  19. 19.
    Ingber DE: Tensegrity II. How structural networks influence cellular information processing networks. J Cell Sci 116: 1397–1408, 2003PubMedCrossRefGoogle Scholar
  20. 20.
    Bershadsky, AD, Balaban, NQ, Geiger, B: Adhesion-dependent cell mechanosensitivity. Annu Rev Cell Dev Biol 19: 677–695, 2003PubMedCrossRefGoogle Scholar
  21. 21.
    Katsumi, A, Orr, AW, Tzima, E, Schwartz MA: Integrins in mechanotransduction. J Biol Chem 279: 12001–12004, 2004PubMedCrossRefGoogle Scholar
  22. 22.
    Pollanen, J, Hedman, K, Nielsen, LS, Dano, K, Vaheri A: Ultrastructural localization of plasma membrane-associated urokinase-type plasminogen activator at focal contacts. J Cell Biol 106: 87–5, 1988PubMedCrossRefGoogle Scholar
  23. 23.
    Aggeler J, Frisch SM, Werb Z: Changes in cell shape correlate with collagenase gene expression in rabbit synovial fibroblasts. J Cell Biol 98: 1662–1671, 1984PubMedCrossRefGoogle Scholar
  24. 24.
    Werb Z, Hembry RM, Murphy G, Aggeler J: Commitment to expression of the metalloendopeptidases, collagenase and stromelysin: Relationship of inducing events to changes in cytoskeletal architecture. J Cell Biol 102: 697–702, 1986PubMedCrossRefGoogle Scholar
  25. 25.
    Werb Z, Tremble PM, Behrendtsen O, Crowley E, Damsky CH: Signal transduction through the fibronectin receptor induces collagenase and stromelysin gene expression. J Cell Biol 109: 877–889, 1989PubMedCrossRefGoogle Scholar
  26. 26.
    Seftor, RE, Seftor, EA, Gehlsen, KR, Stetler-Stevenson WG, Brown PD, Ruoslahti E, Hendrix MJ: Role of the alpha v beta 3 integrin in human melanoma cell invasion. Proc Natl Acad Sci USA 89: 1557–1561, 1992PubMedCrossRefGoogle Scholar
  27. 27.
    Terranova VP, Williams JE, Liotta LA, Martin GR: Modulation of the metastatic activity of melanoma cells by laminin and fibronectin. Science 226: 982–985, 1984PubMedGoogle Scholar
  28. 28.
    Turpeenniemi-Hujanen T, Thorgeirsson UP, Rao CN, Liotta LA: Laminin increases the release of type IV collagenase from malignant cells. J Biol Chem 261: 1883–1889, 1986PubMedGoogle Scholar
  29. 29.
    Kanemoto T, Reich R, Royce L, Greatorex D, Adler SH, Shiraishi N, Martin GR, Yamada Y, Kleinman HK: Identification of an amino acid sequence from the laminin A chain that stimulates metastasis and collagenase IV production. Proc Natl Acad Sci USA 87: 2279–2283, 1990PubMedCrossRefGoogle Scholar
  30. 30.
    Stack S, Gray RD, Pizzo SV: Modulation of plasminogen activation and type IV collagenase activity by a synthetic peptide derived from the laminin A chain. Biochemistry 30: 2073–2077, 1991PubMedCrossRefGoogle Scholar
  31. 31.
    Jia Y, Zeng ZZ, Markwart SM, Rockwood KF, Ignatoski KM, Ethier SP, Livant DL: Integrin fibronectin receptors in matrix metalloproteinase-1-dependent invasion by breast cancer and mammary epithelial cells. Cancer Res 64: 8674–8681, 2004PubMedCrossRefGoogle Scholar
  32. 32.
    Iyer V, Pumiglia K, DiPersio CM: Alpha3beta1 integrin regulates MMP-9 mRNA stability in immortalized keratinocytes: A novel mechanism of integrin-mediated MMP gene expression. J Cell Sci 118: 1185–1195, 2005PubMedCrossRefGoogle Scholar
  33. 33.
    Lauer JL, Gendron CM, Fields GB: Effect of ligand conformation on melanoma cell alpha3beta1 integrin-mediated signal transduction events: Implications for a collagen structural modulation mechanism of tumor cell invasion. Biochemistry 37: 5279–5287, 1998PubMedCrossRefGoogle Scholar
  34. 34.
    Baronas-Lowell D, Lauer-Fields JL, Borgia JA, Sferrazza GF, Al-Ghoul M, Minond D, Fields GB: Differential modulation of human melanoma cell metalloproteinase expression by alpha2beta1 integrin and CD44 triple-helical ligands derived from type IV collagen. J Biol Chem 279: 43503–43513, 2004PubMedCrossRefGoogle Scholar
  35. 35.
    Azzam HS, Thompson EW: Collagen-induced activation of the M(r) 72,000 type IV collagenase in normal and malignant human fibroblastoid cells. Cancer Res 52: 4540–4544, 1992PubMedGoogle Scholar
  36. 36.
    Gilles C, Polette M, Seiki M, Birembaut P, Thompson EW: Implication of collagen type I-induced membrane-type 1-matrix metalloproteinase expression and matrix metalloproteinase-2 activation in the metastatic progression of breast carcinoma. Lab Invest 76: 651–660, 1997PubMedGoogle Scholar
  37. 37.
    Ellerbroek SM, Wu YI, Overall CM, Stack MS: Functional interplay between type I collagen and cell surface matrix metalloproteinase activity. J Biol Chem 276: 24833–24842, 2001PubMedCrossRefGoogle Scholar
  38. 38.
    Ellerbroek SM, Fishman DA, Kearns AS, Bafetti LM, Stack MS: Ovarian carcinoma regulation of matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase through beta1 integrin. Cancer Res 59: 1635–1641, 1999PubMedGoogle Scholar
  39. 39.
    Galvez BG, Matias-Roman S, Yanez-Mo M, Sanchez-Madrid F, Arroyo AG: ECM regulates MT1-MMP localization with beta1 or alphavbeta3 integrins at distinct cell compartments modulating its internalization and activity on human endothelial cells. J Cell Biol 159: 509–521, 2002PubMedCrossRefGoogle Scholar
  40. 40.
    Deryugina EI, Ratnikov BI, Postnova TI, Rozanov DV, Strongin AY: Processing of integrin alpha(v) subunit by membrane type 1 matrix metalloproteinase stimulates migration of breast carcinoma cells on vitronectin and enhances tyrosine phosphorylation of focal adhesion kinase. J Biol Chem 277: 9749–9756, 2002PubMedCrossRefGoogle Scholar
  41. 41.
    Baciu PC, Suleiman EA, Deryugina EI, Strongin AY: Membrane type-1 matrix metalloproteinase (MT1-MMP) processing of pro-alphav integrin regulates cross-talk between alphavbeta3 and alpha2beta1 integrins in breast carcinoma cells. Exp Cell Res 291: 167–175, 2003PubMedCrossRefGoogle Scholar
  42. 42.
    Dumin JA, Dickeson SK, Stricker TP, Bhattacharyya-Pakrasi M, Roby JD, Santoro SA, Parks WC: Pro-collagenase-1 (matrix metalloproteinase-1) binds the alpha(2)beta(1) integrin upon release from keratinocytes migrating on type I collagen. J Biol Chem 276: 29368–29374, 2001PubMedCrossRefGoogle Scholar
  43. 43.
    Bafetti LM, Young TN, Itoh Y, Stack MS: Intact vitronectin induces matrix metalloproteinase-2 and tissue inhibitor of metalloproteinases-2 expression and enhanced cellular invasion by melanoma cells. J Biol Chem 273: 143–149, 1998PubMedCrossRefGoogle Scholar
  44. 44.
    Nisato RE, Hosseini G, Sirrenberg C, Butler GS, Crabbe T, Docherty AJ, Wiesner M, Murphy G, Overall CM, Goodman SL, Pepper MS: Dissecting the role of matrix metalloproteinases (MMP) and integrin alpha(v)beta3 in angiogenesis in vitro: Absence of hemopexin C domain bioactivity, but membrane-Type 1-MMP and alpha(v)beta3 are critical. Cancer Res 65: 9377–9387, 2005PubMedCrossRefGoogle Scholar
  45. 45.
    Steffensen B, Bigg HF, Overall CM: The involvement of the fibronectin type II-like modules of human gelatinase A in cell surface localization and activation. J Biol Chem 273: 20622–20628, 1998PubMedCrossRefGoogle Scholar
  46. 46.
    Tam EM, Wu YI, Butler GS, Stack MS, Overall CM: Collagen binding properties of the membrane type-1 matrix metalloproteinase (MT1-MMP) hemopexin C domain. The ectodomain of the 44-kDa autocatalytic product of MT1-MMP inhibits cell invasion by disrupting native type I collagen cleavage. J Biol Chem 277: 39005–39014, 2002PubMedCrossRefGoogle Scholar
  47. 47.
    Itoh Y, Takamura A, Ito N, Maru Y, Sato H, Suenaga N, Aoki T, Seiki M: Homophilic complex formation of MT1-MMP facilitates proMMP-2 activation on the cell surface and promotes tumor cell invasion. Embo J 20: 4782–4793, 2001PubMedCrossRefGoogle Scholar
  48. 48.
    Lehti K, Lohi J, Juntunen MM, Pei D, Keski-Oja J: Oligomerization through hemopexin and cytoplasmic domains regulates the activity and turnover of membrane-type 1 matrix metalloproteinase. J Biol Chem 277: 8440–8448, 2002PubMedCrossRefGoogle Scholar
  49. 49.
    Nonaka T, Nishibashi K, Itoh Y, Yana I, Seiki M: Competitive disruption of the tumor-promoting function of membrane type 1 matrix metalloproteinase/matrix metalloproteinase-14 in vivo. Mol Cancer Ther 4: 1157–1166, 2005PubMedCrossRefGoogle Scholar
  50. 50.
    Jiang A, Lehti K, Wang X, Weiss SJ, Keski-Oja J, Pei D: Regulation of membrane-type matrix metalloproteinase 1 activity by dynamin-mediated endocytosis. Proc Natl Acad Sci USA 98: 13693–13698, 2001PubMedCrossRefGoogle Scholar
  51. 51.
    Rozanov DV, Deryugina EI, Monosov EZ, Marchenko ND, Strongin AY: Aberrant, persistent inclusion into lipid rafts limits the tumorigenic function of membrane type-1 matrix metalloproteinase in malignant cells. Exp Cell Res 293: 81–95, 2004PubMedCrossRefGoogle Scholar
  52. 52.
    Uekita T, Itoh Y, Yana I, Ohno H, Seiki M: Cytoplasmic tail-dependent internalization of membrane-type 1 matrix metalloproteinase is important for its invasion-promoting activity. J Cell Biol 155: 1345-1356, 2001PubMedCrossRefGoogle Scholar
  53. 53.
    Remacle, A, Murphy G, Roghi C: Membrane type I-matrix metalloproteinase (MT1-MMP) is internalised by two different pathways and is recycled to the cell surface. J Cell Sci 116: 3905–3916, 2003PubMedCrossRefGoogle Scholar
  54. 54.
    Annabi B, Lachambre M, Bousquet-Gagnon N, Page M, Gingras D, Beliveau R: Localization of membrane-type 1 matrix metalloproteinase in caveolae membrane domains. Biochem J 353: 547–553, 2001PubMedCrossRefGoogle Scholar
  55. 55.
    Wu, X, Gan B, Yoo Y, Guan JL: FAK-mediated src phosphorylation of endophilin A2 inhibits endocytosis of MT1-MMP and promotes ECM degradation. Dev Cell 9: 185–196, 2005PubMedCrossRefGoogle Scholar
  56. 56.
    Wu YI, Munshi HG, Sen R, Snipas SJ, Salvesen GS, Fridman R, Stack MS: Glycosylation broadens the substrate profile of membrane type 1 matrix metalloproteinase. J Biol Chem 279: 8278–8289, 2004PubMedCrossRefGoogle Scholar
  57. 57.
    Munshi HG, Wu YI, Ariztia EV, Stack MS: Calcium regulation of matrix metalloproteinase-mediated migration in oral squamous cell carcinoma cells. J Biol Chem 277: 41480–41488, 2002PubMedCrossRefGoogle Scholar
  58. 58.
    Munshi HG, Wu YI, Mukhopadhyay S, Ottaviano AJ, Sassano A, Koblinski JE, Platanias LC, Stack MS: Differential regulation of membrane type 1-matrix metalloproteinase activity by ERK 1/2- and p38 MAPK-modulated tissue inhibitor of metalloproteinases 2 expression controls transforming growth factor-beta1-induced pericellular collagenolysis. J Biol Chem 279: 39042–39050, 2004PubMedCrossRefGoogle Scholar
  59. 59.
    Golubkov VS, Boyd S, Savinov AY, Chekanov AV, Osterman AL, Remacle A, Rozanov DV, Doxsey SJ, Strongin AY: Membrane type-1 matrix metalloproteinase (MT1-MMP) exhibits an important intracellular cleavage function and causes chromosome instability. J Biol Chem 280: 25079–25086, 2005PubMedCrossRefGoogle Scholar
  60. 60.
    Fujiwara T, Bandi M, Nitta M, Ivanova EV, Bronson RT, Pellman D: Cytokinesis failure generating tetraploids promotes tumorigenesis in p53-null cells. Nature 437: 1043–1047, 2005PubMedCrossRefGoogle Scholar
  61. 61.
    Wijnhoven BP, Dinjens WN, Pignatelli M: E-cadherin-catenin cell-cell adhesion complex and human cancer. Br J Surg 87: 992–1005, 2000PubMedCrossRefGoogle Scholar
  62. 62.
    Conacci-Sorrell M, Zhurinsky J, Ben-Ze'ev A: The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 109: 987–991, 2002PubMedCrossRefGoogle Scholar
  63. 63.
    Kantak SS and Kramer RH: E-cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells. J Biol Chem 273: 16953–16961, 1998CrossRefGoogle Scholar
  64. 64.
    Mareel M, Boterberg T, Noe V, Van Hoorde L, Vermeulen S, Bruyneel E, Bracke M: E-cadherin/catenin/cytoskeleton complex: A regulator of cancer invasion. J Cell Physiol 173: 271–274, 1997PubMedCrossRefGoogle Scholar
  65. 65.
    Angst BD, Marcozzi C, Magee AI: The cadherin superfamily. J Cell Sci 114: 625–626, 2001PubMedGoogle Scholar
  66. 66.
    Pece S, Chiariello M, Murga C, Gutkind JS: Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J Biol Chem 274: 19347–19351, 1999PubMedCrossRefGoogle Scholar
  67. 67.
    Pece S, Gutkind JS: Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem 275: 41227–41233, 2000PubMedCrossRefGoogle Scholar
  68. 68.
    Luo J, Lubaroff DM, Hendrix MJ: Suppression of prostate cancer invasive potential and matrix metalloproteinase activity by E-cadherin transfection. Cancer Res 59: 3552–3556, 1999PubMedGoogle Scholar
  69. 69.
    Chunthapong J, Seftor EA, Khalkhali-Ellis Z, Seftor RE, Amir S, Lubaroff DM, Heidger PM, Jr, Hendrix MJ: Dual roles of E-cadherin in prostate cancer invasion. J Cell Biochem 91: 649–661, 2004PubMedCrossRefGoogle Scholar
  70. 70.
    Nawrocki-Raby B, Gilles C, Polette M, Martinella-Catusse C, Bonnet N, Puchelle E, Foidart JM, Van Roy F, Birembaut P: E-Cadherin mediates MMP down-regulation in highly invasive bronchial tumor cells. Am J Pathol 163: 653–661, 2003PubMedGoogle Scholar
  71. 71.
    Llorens A, Rodrigo I, Lopez-Barcons L, Gonzalez-Garrigues M, Lozano E, Vinyals A, Quintanilla M, Cano A, Fabra A: Down-regulation of E-cadherin in mouse skin carcinoma cells enhances a migratory and invasive phenotype linked to matrix metalloproteinase-9 gelatinase expression. Lab Invest 78: 1131–1142, 1998PubMedGoogle Scholar
  72. 72.
    Munshi, HG, Ghosh S, Mukhopadhyay S, Wu YI, Sen R, Green KJ, Stack MS: Proteinase suppression by E-cadherin-mediated cell-cell attachment in premalignant oral keratinocytes. J Biol Chem 277: 38159–38167, 2002PubMedCrossRefGoogle Scholar
  73. 73.
    Margulis A, Zhang W, Alt-Holland A, Crawford HC, Fusenig NE, Garlick JA: E-cadherin suppression accelerates squamous cell carcinoma progression in three-dimensional, human tissue constructs. Cancer Res 65: 1783–1791, 2005PubMedCrossRefGoogle Scholar
  74. 74.
    Nawrocki-Raby B, Gilles C, Polette M, Bruyneel E, Laronze JY, Bonnet N, Foidart JM, Mareel M, Birembaut P: Upregulation of MMPs by soluble E-cadherin in human lung tumor cells. Int J Cancer 105: 790–795, 2003PubMedCrossRefGoogle Scholar
  75. 75.
    Marchenko GN, Marchenko ND, Leng J, Strongin AY: Promoter characterization of the novel human matrix metalloproteinase-26 gene: regulation by the T-cell factor-4 implies specific expression of the gene in cancer cells of epithelial origin. Biochem J 363: 253–262, 2002PubMedCrossRefGoogle Scholar
  76. 76.
    Brabletz, T, Jung, A, Dag, S, Hlubek F, Kirchner T: beta-catenin regulates the expression of the matrix metalloproteinase-7 in human colorectal cancer. Am J Pathol 155: 1033–1038, 1999PubMedGoogle Scholar
  77. 77.
    Crawford HC, Fingleton BM, Rudolph-Owen LA, Goss KJ, Rubinfeld B, Polakis P, Matrisian LM: The metalloproteinase matrilysin is a target of beta-catenin transactivation in intestinal tumors. Oncogene 18: 2883–2891, 1999PubMedCrossRefGoogle Scholar
  78. 78.
    Gustavson MD, Crawford HC, Fingleton B, Matrisian LM: Tcf binding sequence and position determines beta-catenin and Lef-1 responsiveness of MMP-7 promoters. Mol Carcinog 41: 125–139, 2004PubMedCrossRefGoogle Scholar
  79. 79.
    Cheon, S, Poon, R, Yu, C, Khoury, M, Shenker R, Fish J, Alman BA: Prolonged beta-catenin stabilization and tcf-dependent transcriptional activation in hyperplastic cutaneous wounds. Lab Invest 85: 416–425, 2005PubMedCrossRefGoogle Scholar
  80. 80.
    Li YJ, Wei ZM, Meng YX, Ji XR: Beta-catenin up-regulates the expression of cyclinD1, c-myc and MMP-7 in human pancreatic cancer: Relationships with carcinogenesis and metastasis. World J Gastroenterol 11: 2117–2123, 2005PubMedGoogle Scholar
  81. 81.
    Takahashi M, Tsunoda T, Seiki M, Nakamura Y, Furukawa Y: Identification of membrane-type matrix metalloproteinase-1 as a target of the beta-catenin/Tcf4 complex in human colorectal cancers. Oncogene 21: 5861–5867, 2002PubMedCrossRefGoogle Scholar
  82. 82.
    Marchenko ND, Marchenko GN, Weinreb RN, Lindsey JD, Kyshtoobayeva A, Crawford H C, Strongin AY: Beta-catenin regulates the gene of MMP-26, a novel metalloproteinase expressed both in carcinomas and normal epithelial cells. Int J Biochem Cell Biol 36: 942–956, 2004PubMedCrossRefGoogle Scholar
  83. 83.
    Qian X, Karpova T, Sheppard AM, McNally J, Lowy DR: E-cadherin-mediated adhesion inhibits ligand-dependent activation of diverse receptor tyrosine kinases. Embo J 23: 1739–1748, 2004PubMedCrossRefGoogle Scholar
  84. 84.
    Suyama, K, Shapiro, I, Guttman, M, Hazan RB: A signaling pathway leading to metastasis is controlled by N-cadherin and the FGF receptor. Cancer Cell 2: 301–314, 2002PubMedCrossRefGoogle Scholar
  85. 85.
    Behrens, J, Birchmeier, W, Goodman, SL, Imhof BA: Dissociation of Madin-Darby canine kidney epithelial cells by the monoclonal antibody anti-arc-1: Mechanistic aspects and identification of the antigen as a component related to uvomorulin. J Cell Biol 101: 1307–1315, 1985PubMedCrossRefGoogle Scholar
  86. 86.
    Shibamoto, S, Hayakawa, M, Takeuchi K, Hori T, Oku N, Miyazawa, K, Kitamura, N, Takeichi M, Ito F: Tyrosine phosphorylation of beta-catenin and plakoglobin enhanced by hepatocyte growth factor and epidermal growth factor in human carcinoma cells. Cell Adhes Commun 1: 295–305, 1994PubMedGoogle Scholar
  87. 87.
    Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W: E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. J Cell Biol 113: 173–185, 1991PubMedCrossRefGoogle Scholar
  88. 88.
    Hoschuetzky H, Aberle H, Kemler R: Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 127: 1375–1380, 1994PubMedCrossRefGoogle Scholar
  89. 89.
    Peinado H, Marin F, Cubillo E, Stark HJ, Fusenig N, Nieto MA, Cano A: Snail and E47 repressors of E-cadherin induce distinct invasive and angiogenic properties in vivo. J Cell Sci 117: 2827–2839, 2004PubMedCrossRefGoogle Scholar
  90. 90.
    Huber MA, Kraut N, Beug H: Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17: 548–558, 2005PubMedCrossRefGoogle Scholar
  91. 91.
    De Craene B, Gilbert B, Stove C, Bruyneel E, van Roy F, Berx G: The transcription factor snail induces tumor cell invasion through modulation of the epithelial cell differentiation program. Cancer Res 65: 6237–6244, 2005PubMedCrossRefGoogle Scholar
  92. 92.
    Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F: The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Mol Cell 7: 1267–1278, 2001PubMedCrossRefGoogle Scholar
  93. 93.
    Hajra KM, Fearon ER: Cadherin and catenin alterations in human cancer. Genes Chromosomes Cancer 34: 255–268, 2002PubMedCrossRefGoogle Scholar
  94. 94.
    Sugimachi K, Tanaka S, Kameyama T, Taguchi K, Aishima S, Shimada M, Tsuneyoshi M: Transcriptional repressor snail and progression of human hepatocellular carcinoma. Clin Cancer Res 9: 2657–2664, 2003PubMedGoogle Scholar
  95. 95.
    Rosivatz E, Becker I, Specht K, Fricke E, Luber B, Busch R, Hofler H, Becker KF: Differential expression of the epithelial-mesenchymal transition regulators snail, SIP1, twist in gastric cancer. Am J Pathol 161: 1881–1891, 2002PubMedGoogle Scholar
  96. 96.
    Moody SE, Perez D, Pan TC, Sarkisian CJ, Portocarrero CP, Sterner CJ, Notorfrancesco KL, Cardiff RD, Chodosh LA: The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8: 197–209, 2005PubMedCrossRefGoogle Scholar
  97. 97.
    Miyoshi A, Kitajima Y, Sumi K, Sato K, Hagiwara A, Koga Y, Miyazaki K: Snail and SIP1 increase cancer invasion by upregulating MMP family in hepatocellular carcinoma cells. Br J Cancer 90: 1265–1273, 2004PubMedCrossRefGoogle Scholar
  98. 98.
    Miyoshi A, Kitajima Y, Kido S, Shimonishi T, Matsuyama S, Kitahara K, Miyazaki K: Snail accelerates cancer invasion by upregulating MMP expression and is associated with poor prognosis of hepatocellular carcinoma. Br J Cancer 92: 252–258, 2005PubMedGoogle Scholar
  99. 99.
    Yokoyama K, Kamata N, Fujimoto R, Tsutsumi S, Tomonari M, Taki M, Hosokawa H, Nagayama M: Increased invasion and matrix metalloproteinase-2 expression by Snail-induced mesenchymal transition in squamous cell carcinomas. Int J Oncol 22: 891–898, 2003PubMedGoogle Scholar
  100. 100.
    Kuphal S, Palm HG, Poser I, Bosserhoff AK: Snail-regulated genes in malignant melanoma. Melanoma Res 15: 305–313, 2005PubMedCrossRefGoogle Scholar
  101. 101.
    Jorda M, Olmeda D, Vinyals A, Valero E, Cubillo E, Llorens A, Cano A, Fabra A: Upregulation of MMP-9 in MDCK epithelial cell line in response to expression of the Snail transcription factor. J Cell Sci 118: 3371–3385, 2005PubMedCrossRefGoogle Scholar
  102. 102.
    Shih, JY, Tsai, MF, Chang, TH, Chang, YL, Yuan A, Yu, CJ, Lin, SB, Liou, GY, Lee, ML, Chen JJ, Hong TM, Yang SC, Su JL, Lee YC, Yang PC: Transcription repressor slug promotes carcinoma invasion and predicts outcome of patients with lung adenocarcinoma. Clin Cancer Res 11: 8070–8078, 2005PubMedCrossRefGoogle Scholar
  103. 103.
    Xian, W, Schwertfeger, KL, Vargo-Gogola, T, Rosen JM: Pleiotropic effects of FGFR1 on cell proliferation, survival, migration in a 3D mammary epithelial cell model. J Cell Biol 171: 663–673, 2005PubMedCrossRefGoogle Scholar
  104. 104.
    Noe V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, Bruyneel E, Matrisian LM, Mareel M: Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 114: 111–118, 2001PubMedGoogle Scholar
  105. 105.
    McGuire JK, Li Q, Parks WC: Matrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol 162: 1831–1843, 2003PubMedGoogle Scholar
  106. 106.
    Covington MD, Burghardt RC, Parrish AR: Ischemia-induced cleavage of cadherins in NRK cells requires MT1-MMP (MMP-14). Am J Physiol Renal Physiol 290: F43–51, 2006PubMedCrossRefGoogle Scholar
  107. 107.
    Sanceau J, Truchet S, Bauvois B: Matrix metalloproteinase-9 silencing by RNA interference triggers the migratory-adhesive switch in Ewing's sarcoma cells. J Biol Chem 278: 36537–36546, 2003PubMedCrossRefGoogle Scholar
  108. 108.
    Ho AT, Voura EB, Soloway PD, Watson KL, Khokha R: MMP inhibitors augment fibroblast adhesion through stabilization of focal adhesion contacts and up-regulation of cadherin function. J Biol Chem 276: 40215–40224, 2001PubMedGoogle Scholar
  109. 109.
    Radisky, DC, Levy, DD, Littlepage, LE, Liu, H, Nelson, CM, Fata, JE, Leake, D, Godden EL, Albertson DG, Nieto MA, Werb Z, Bissell MJ: Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436: 123–127, 2005PubMedCrossRefGoogle Scholar
  110. 110.
    Reya T, Clevers H: Wnt signalling in stem cells and cancer. Nature 434: 843–850, 2005PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Division of Hematology/Oncology; Department of Medicine; Robert H. Lurie Comprehensive Cancer Center, Jesse Brown VA Medical CenterNorthwestern University Feinberg Medical SchoolChicago
  2. 2.Department of Cell & Molecular Biology Robert H. Lurie Comprehensive Cancer CenterNorthwestern University Feinberg Medical SchoolChicago

Personalised recommendations