Advertisement

Cancer and Metastasis Reviews

, Volume 24, Issue 3, pp 403–411 | Cite as

β 1 integrin function in vivo: Adhesion, migration and more

  • C. Brakebusch
  • R. Fässler
Article

Keywords

integrin cell adhesion cell migration mouse genetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brakebusch C, Bouvard D, Stanchi F, Sakai T, Fässler R: Integrins in invasive growth. J Clin Invest 109: 999–1006, 2002CrossRefPubMedGoogle Scholar
  2. 2.
    Hynes RO: Integrins: bidirectional, allosteric signaling machines. Cell 110: 673–687, 2002CrossRefPubMedGoogle Scholar
  3. 3.
    Liu S, Calderwood DA, Ginsberg MH: Integrin cytoplasmic domain-binding proteins. J Cell Sci 113: 3563–3571, 2000PubMedGoogle Scholar
  4. 4.
    Brakebusch C, Fässler R: The integrin-actin connection, an eternal love affair. EMBO J 22: 2324–2333, 2003CrossRefPubMedGoogle Scholar
  5. 5.
    Hannigan GE, Leung-Hagesteijn C, Fitz-Gibbon L, Coppolino MG, Radeva G, Filmus J, Bell JC, Dedhar S: Regulation of cell adhesion and anchorage-dependent growth by a new β1-integrin-linked protein kinase. Nature 379: 91–96, 1996CrossRefPubMedGoogle Scholar
  6. 6.
    Zervas CG, Gregory SL, Brown NH: Drosophila integrin-linked kinase is required at sites of integrin adhesion to link the cytoskeleton to the plasma membrane. J Cell Biol 152: 1007–1018, 2001CrossRefPubMedGoogle Scholar
  7. 7.
    Mackinnon AC, Qadota H, Norman KR, Moerman DG, Williams BD: C. elegans PAT-4/ILK functions as an adaptor protein within integrin adhesion complexes. Curr Biol 12: 787–797, 2002CrossRefPubMedGoogle Scholar
  8. 8.
    Sakai T, Li S, Docheva D, Grashoff C, Sakai K, Kostka G, Braun A, Pfeifer A, Yurchenco PD, Fässler R: Integrin-linked kinase (ILK) is required for polarizing the epiblast, cell adhesion, and controlling actin accumulation. Genes Dev 17: 926–940, 2003CrossRefPubMedGoogle Scholar
  9. 9.
    Grashoff C, Aszodi A, Sakai T, Hunziker EB, Fässler R: Integrin-linked kinase regulates chondrocyte shape and proliferation. EMBO Rep 4: 432–438, 2003CrossRefPubMedGoogle Scholar
  10. 10.
    Brown EJ: Integrin-associated proteins. Curr Opin Cell Biol 14: 603–607, 2002CrossRefPubMedGoogle Scholar
  11. 11.
    Moro L, Dolce L, Cabodi S, Bergatto E, Erba EB, Smeriglio M, Turco E, Retta SF, Giuffrida MG, Venturino M, Godovac-Zimmermann J, Conti A, Schaefer E, Beguinot L, Tacchett,i C, Gaggini P, Silengo L, Tarone G, Defilippi P: Integrin-induced epidermal growth factor (EGF) receptor activation requires c-Src and p130Cas and leads to phosphorylation of specific EGF receptor tyrosines. J Biol. Chem 277: 9405–9414, 2002CrossRefPubMedGoogle Scholar
  12. 12.
    Wei Y, Eble JA, Wang Z, Kreidberg JA, Chapman HA: Urokinase receptors promote β1 integrin function through interactions with integrin α3β1. Mol Biol Cell 12: 2975–2986, 2001PubMedGoogle Scholar
  13. 13.
    Wang XQ, Lindberg FP, Frazier WA: Integrin-associated protein stimulates α2β1-dependent chemotaxis via Gi-mediated inhibition of adenylate cyclase and extracellular-regulated kinases. J Cell Biol 147: 389–400, 1999CrossRefPubMedGoogle Scholar
  14. 14.
    Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Perez LI, Gonzalez FA, Gresham HD, Turner JT, Weisman GA: An RGD sequence in the P2Y(2) receptor interacts with αvβ3 integrins and is required for G(o)-mediated signal transduction. J Cell Biol 153: 491–501, 2001CrossRefPubMedGoogle Scholar
  15. 15.
    Decker L, Baron W, Ffrench-Constant C: Lipid rafts: Microenvironments for integrin-growth factor interactions in neural development. Biochem. Soc Trans 32: 426–430, 2004CrossRefPubMedGoogle Scholar
  16. 16.
    Bodeau AL, Berrier AL, Mastrangelo AM, Martinez R, LaFlamme SE: A functional comparison of mutations in integrin β cytoplasmic domains: effects on the regulation of tyrosine phosphorylation, cell spreading, cell attachment and β1 integrin conformation. J Cell Sci 114: 2795–2807, 2001PubMedGoogle Scholar
  17. 17.
    Fässler R, Meyer M: Consequences of lack of β1 integrin gene expression in mice. Genes Dev 9: 1896–1908, 1995PubMedGoogle Scholar
  18. 18.
    Stephens LE, Sutherland AE, Klimanskaya IV, Andrieux A, Meneses J, Pedersen RA, Damsky CH: Deletion of β1 integrins in mice results in inner cell mass failure and peri-implantation lethality. Genes Dev 9: 1883–1895, 1995PubMedGoogle Scholar
  19. 19.
    Aumailley M, Pesch M, Tunggal L, Gaill F, Fässler R: Altered synthesis of laminin 1 and absence of basement membrane component deposition in β1 integrin-deficient embryoid bodies. J Cell Sci 113: 259–268, 2001Google Scholar
  20. 20.
    Li S, Harrison D, Carbonetto S, Fässler R, Smyth N, Edgar D, Yurchenco PD: Matrix assembly, regulation, and survival functions of laminin and its receptors in embryonic stem cell differentiation. J Cell Biol 157: 1279–1290, 2002CrossRefPubMedGoogle Scholar
  21. 21.
    Henry MD, Campbell KP: A role for dystroglycan in basement membrane assembly. Cell 95: 859–870, 1998CrossRefPubMedGoogle Scholar
  22. 22.
    Brown NH, Gregory SL, Rickoll WL, Fessler LI, Prout M, White RA, Fristrom JW: Talin is essential for integrin function in Drosophila. Dev Cell 3: 569–579, 2002CrossRefPubMedGoogle Scholar
  23. 23.
    Monkley SJ, Zhou XH, Kinston SJ, Giblett SM, Hemmings L, Priddle H, Brown JE, Pritchard CA, Critchley DR, Fässler R: Disruption of the talin gene arrests mouse development at the gastrulation stage. Dev Dyn 219: 560–574, 2000PubMedGoogle Scholar
  24. 24.
    Hirsch E, Barberis L, Brancaccio M, Azzolino O, Xu D, Kyriakis JM, Silengo L, Giancotti FG, Tarone G, Fässler R, Altruda F: Defective Rac-mediated proliferation and survival after targeted mutation of the β1 integrin cytodomain. J Cell Biol 157: 481–492, 2002CrossRefPubMedGoogle Scholar
  25. 25.
    Brakebusch C, Grose R, Quondamatteo F, Ramirez A, Jorcano JL, Pirro A, Svensson M, Herken R, Sasaki T, Timpl R, Werner S, Fässler R: Skin and hair follicle integrity is crucially dependent on β1 integrin expression on keratinocytes. EMBO J 19: 3990–4003, 2000CrossRefPubMedGoogle Scholar
  26. 26.
    Raghavan S, Bauer C, Mundschau G, Li Q, Fuchs E: Conditional ablation of β1 integrin in skin. Severe defects in epidermal proliferation, basement membrane formation, and hair follicle invagination. J Cell Biol 150: 1149–1160, 2000CrossRefPubMedGoogle Scholar
  27. 27.
    Graus-Porta D, Blaess S, Senften M, Littlewood–Evans A, Damsky C, Huang Z, Orban P, Klein R, Schittny JC, Müller U: β1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex. Neuron 31: 367–379, 2001CrossRefPubMedGoogle Scholar
  28. 28.
    Michno K, Boras-Granic K, Mill P, Hui CC, Hamel PA: Shh expression is required for embryonic hair follicle but not mammary gland development. Dev. Biol 264: 153–165, 2003CrossRefPubMedGoogle Scholar
  29. 29.
    St-Jacques B, Dassule HR, Karavanova I, Botchkarev VA, Li J, Danielian PS, McMahon JA, Lewis PM, Paus R, McMahon AP: Sonic hedgehog signaling is essential for hair development. Curr Biol 8: 1058–1068, 1998CrossRefPubMedGoogle Scholar
  30. 30.
    Pons S, Trejo JL, Martinez-Morales JR, Marti E: Vitronectin regulates Sonic hedgehog activity during cerebellum development through CREB phosphorylation. Development 128: 1481–1492, 2001PubMedGoogle Scholar
  31. 31.
    Blaess S, Graus-Porta D, Belvindrah R, Radakovits R, Pons S, Littlewood-Evans A, Senften M, Guo H, Li Y, Miner JH, Reichardt LF, Müller U: β1-integrins are critical for cerebellar granule cell precursor proliferation. J Neurosci 24: 3402–3412, 2004CrossRefPubMedGoogle Scholar
  32. 32.
    Campos LS, Leone DP, Relvas JB, Brakebusch C, Fässler R, Suter U, ffrench-Constant, C: β1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development 131: 3433–3444, 2004CrossRefPubMedGoogle Scholar
  33. 33.
    Grose R, Hutter C, Bloch W, Thorey I, Watt FM, Fässler R, Brakebusch C, Werner S: A crucial role of β1 integrins for keratinocyte migration in vitro and during cutaneous wound repair. Development 129: 2303–2315, 2002PubMedGoogle Scholar
  34. 34.
    Raghavan S, Vaezi A, Fuchs E: A role for α β1 integrins in focal adhesion function and polarized cytoskeletal dynamics. Dev Cell 5: 415–427, 2003CrossRefPubMedGoogle Scholar
  35. 35.
    Aszodi A, Hunziker EB, Brakebusch C, Fässler R: β1 integrins regulate chondrocyte rotation, G1 progression, and cytokinesis. Genes Dev 17: 2465–2479, 2003CrossRefPubMedGoogle Scholar
  36. 36.
    Karsenty G, Wagner EF: Reaching a genetic and molecular understanding of skeletal development. Dev Cell 2: 389–406, 2002CrossRefPubMedGoogle Scholar
  37. 37.
    Terpstra L, Prud'homme J, Arabian A, Takeda S, Karsenty G, Dedhar S, St-Arnaud R: Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J Cell Biol 162: 139–148, 2003CrossRefPubMedGoogle Scholar
  38. 38.
    Hirsch E, Iglesias A, Potocnik AJ, Hartmann U, Fässler R: Impaired migration but not differentiation of haematopoietic stem cells in the absence of β1 integrins. Nature 380: 171–175, 1996CrossRefPubMedGoogle Scholar
  39. 39.
    Potocnik AJ, Brakebusch C, Fässler R: Fetal and adult hematopoietic stem cells require β1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12: 653–663, 2000CrossRefPubMedGoogle Scholar
  40. 40.
    Brakebusch C, Fillatreau S, Potocnik AJ, Bungartz G, Wilhelm P, Svensson M, Kearney P, Körner H, Gray D, Fässler R: β1 integrin is not essential for hematopoiesis but is necessary for the T cell-dependent IgM antibody response. Immunity 16: 465–477, 2002CrossRefPubMedGoogle Scholar
  41. 41.
    von Andrian UH, Engelhardt B: α 4 integrins as therapeutic targets in autoimmune disease. N Engl J Med 348: 68–72, 2003CrossRefPubMedGoogle Scholar
  42. 42.
    Nieswandt B, Brakebusch C, Bergmeier W, Schulte V, Bouvard D, Mokhtari-Nejad R, Lindhout T, Heemskerk JW, Zirngibl H, Fässler R: Glycoprotein VI but not α2β1 integrin is essential for platelet interaction with collagen. EMBO J 20: 2120–2130, 2001CrossRefPubMedGoogle Scholar
  43. 43.
    Holtkötter O, Nieswandt B, Smyth N, Müller W, Hafner M, Schulte V, Krieg T, Eckes B: Integrin α2-deficient mice develop normally, are fertile, but display partially defective platelet interaction with collagen. J Biol Chem 277: 10789–10794, 2002CrossRefPubMedGoogle Scholar
  44. 44.
    Chen J, Diacovo TG, Grenache DG, Santoro SA, Zutter MM: The α2 integrin subunit-deficient mouse: A multifaceted phenotype including defects of branching morphogenesis and hemostasis. Am J Pathol 161: 337–344, 2002PubMedGoogle Scholar
  45. 45.
    Kuijpers MJ, Schulte V, Bergmeier W, Lindhout T, Brakebusch C, Offermanns S, Fässler R, Heemskerk JW, Nieswandt B: Complementary roles of glycoprotein VI and α2β1 integrin in collagen-induced thrombus formation in flowing whole blood ex vivo. FASEB J 17: 685–687, 2003PubMedGoogle Scholar
  46. 46.
    Gruner S, Prostredna M, Schulte V, Krieg T, Eckes B, Brakebusch C, Nieswandt B: Multiple integrin-ligand interactions synergize in shear-resistant platelet adhesion at sites of arterial injury in vivo. Blood 102: 4021–4027, 2003CrossRefPubMedGoogle Scholar
  47. 47.
    Hirsch E, Lohikangas L, Gullberg D, Johansson S, Fässler R: Mouse myoblasts can fuse and form a normal sarcomere in the absence of β1 integrin expression. J Cell Sci 111: 2397–2409, 1998PubMedGoogle Scholar
  48. 48.
    Schwander M, Leu M, Stumm M, Dorchies OM, Ruegg UT, Schittny J, Müller U: β1 integrins regulate myoblast fusion and sarcomere assembly. Dev Cell 4: 673–685, 2003CrossRefPubMedGoogle Scholar
  49. 49.
    Hemler ME: Specific tetraspanin functions. J Cell Biol 155: 1103–1107, 2001CrossRefPubMedGoogle Scholar
  50. 50.
    Brakebusch C, Wennerberg K, Krell HW, Weidle UH, Sallmyr A, Johansson S, Fässler R: β1 integrin promotes but is not essential for metastasis of ras-myc transformed fibroblasts. Oncogene 18: 3852–3861, 1999CrossRefPubMedGoogle Scholar
  51. 51.
    Stroeken PJ, van Rijthoven EA, van der Valk MA, Roos E: Targeted disruption of the β1 integrin gene in a lymphoma cell line greatly reduces metastatic capacity. Cancer Res 58: 1569–1577, 1998PubMedGoogle Scholar
  52. 52.
    Stroeken PJ, van Rijthoven EA, Boer E, Geerts D, Roos E: Cytoplasmic domain mutants of β1 integrin, expressed in β1-knockout lymphoma cells, have distinct effects on adhesion, invasion and metastasis. Oncogene. 19: 1232–1238, 2000CrossRefPubMedGoogle Scholar
  53. 53.
    White DE, Kurpios NA, Zuo D, Hassell JA, Blaess S, Mueller U, Muller WJ: Targeted disruption of β1-integrin in a transgenic mouse model of human breast cancer reveals an essential role in mammary tumor induction. Cancer Cell 6: 159–170, 2004CrossRefPubMedGoogle Scholar
  54. 54.
    Balkwill F: Cancer and the chemokine network. Nat Rev Cancer 4: 540–550, 2004CrossRefPubMedGoogle Scholar
  55. 55.
    Cardones AR, Murakami T, Hwang ST: CXCR4 enhances adhesion of B16 tumor cells to endothelial cells in vitro and in vivo via β1 integrin. Cancer Res 63: 6751–6757, 2003PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Max Planck Institute of BiochemistryJunior Group “Regulation of Cytoskeletal Organization”MartinsriedGermany
  2. 2.Max Planck Institute of BiochemistryDepartment of Molecular MedicineMartinsriedGermany

Personalised recommendations