Cancer and Metastasis Reviews

, Volume 24, Issue 1, pp 35–45 | Cite as

Tumor cell invasion and survival in head and neck cancer

  • Randall H. KramerEmail author
  • Xiaodong Shen
  • Hua Zhou


Squamous cell carcinoma (SCC) is the primary tumor type in head and neck cancer. Typically, these tumor cells show persistent invasion that frequently leads to local recurrence and distant lymphatic metastasis. The process of invasion involves concurrent infiltration and destruction of adjacent tissues. As with normal mucosal epithelium, SCC cells express receptors that mediate cell-extracellular matrix (ECM) adhesion (integrins) and cell-cell adhesion (cadherins). Both receptor families represent important signaling devices that are capable of promoting survival and proliferation. Recent results indicate that integrins and cadherins cooperate to regulate invasive behavior. During SCC invasion, cells actively migrate through the surrounding ECM with the simultaneous remodeling of their intercellular adhesions. During invasion, integrin receptor engagement with specific ECM ligands along with concurrent remodeling of cadherin adhesions induces changes in the cytoskeleton though modulation of the activities of Rho family members. Tumor development and progression of SCC proceeds with the generation of variant cells with potential alterations in expression of adhesion receptors, and their associated signaling pathways lead to a highly invasive and metastatic phenotype. Understanding the molecular events that define this subset of invasive cells will facilitate the development of new treatment strategies.


invasion integrin cadherin laminin Rho GTPase 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Califano J, van der Riet P, Westra W, Nawroz H, Clayman G, Piantadosi S, Corio R, Lee D, Greenberg B, Koch W, Sidransky D: Genetic progression model for head and neck cancer: Implications for field cancerization. Cancer Res 56: 2488–2492, 1996PubMedGoogle Scholar
  2. 2.
    Califano J, Westra WH, Meininger G, Corio R, Koch WM, Sidransky D: Genetic progression and clonal relationship of recurrent premalignant head and neck lesions. Clin Cancer Res 6: 347–352, 2000PubMedGoogle Scholar
  3. 3.
    Ziober BL, Silverman SS, Jr. Kramer RH: Adhesive mechanisms regulating invasion and metastasis in oral cancer. Crit Rev Oral Biol Med 12: 499–510, 2001PubMedCrossRefGoogle Scholar
  4. 4.
    Ziober BL, Kramer RH: Chapter 6: Adhesion receptors in oral cancer invasion. In: Ensley JF, Gutkind JS (eds) Head and Neck Cancer. Elsevier Science, 2003, pp 65–79Google Scholar
  5. 5.
    Colognato H, Yurchenco PD: Form and function: The laminin family of heterotrimers. Dev Dyn 218: 213–234, 2000CrossRefPubMedGoogle Scholar
  6. 6.
    Nguyen BP, Ryan MC, Gil SG, Carter WG: Deposition of laminin 5 in epidermal wounds regulates integrin signaling and adhesion. Curr Opin Cell Biol 12: 554–562, 2000CrossRefPubMedGoogle Scholar
  7. 7.
    Rousselle P, Lunstrum GP, Keene DR, Burgeson RE: Kalinin: an epithelium-specific basement membrane adhesion molecule that is a component of anchoring filaments. J Cell Biol 114: 567–576, 1991CrossRefPubMedGoogle Scholar
  8. 8.
    Pyke C, Salo S, Ralfkiaer E, Romer J, Dano K, Tryggvason K: Laminin-5 is a marker of invading cancer cells in some human carcinomas and is coexpressed with the receptor for urokinase plasminogen activator in budding cancer cells in colon adenocarcinomas. Cancer Res 55: 4132–4139, 1995PubMedGoogle Scholar
  9. 9.
    Zhang K, Kramer RH: Laminin 5 deposition promotes keratinocyte motility. Exp Cell Res 227: 309–322, 1996PubMedGoogle Scholar
  10. 10.
    Kainulainen T, Autio-Harmainen H, Oikarinen A, Salo S, Tryggvason K, Salo T: Altered distribution and synthesis of laminin-5 (kalinin) in oral lichen planus, epithelial dysplasias and squamous cell carcinomas. Br J Dermatol 136: 331–336, 1997CrossRefPubMedGoogle Scholar
  11. 11.
    Ono Y, Nakanishi Y, Ino Y, Niki T, Yamada T, Yoshimura K, Saikawa M, Nakajima T, Hirohashi S: Clinocopathologic significance of laminin-5 gamma2 chain expression in squamous cell carcinoma of the tongue: Immunohistochemical analysis of 67 lesions. Cancer 85: 2315–2321, 1999PubMedGoogle Scholar
  12. 12.
    Ginos MA, Page GP, Michalowicz BS, Patel KJ, Volker SE, Pambuccian SE, Ondrey FG, Adams GL, Gaffney PM: Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck. Cancer Res 64: 55–63, 2004PubMedGoogle Scholar
  13. 13.
    Patarroyo M, Tryggvason K, Virtanen I: Laminin isoforms in tumor invasion, angiogenesis and metastasis. Semin Cancer Biol 12: 197–207, 2002CrossRefPubMedGoogle Scholar
  14. 14.
    Patel V, Aldridge K, Ensley JF, Odell E, Boyd A, Jones J, Gutkind JS, Yeudall WA: Laminin-gamma2 overexpression in head-and-neck squamous cell carcinoma. Int J Cancer 99: 583–588, 2002PubMedGoogle Scholar
  15. 15.
    Niki T, Kohno T, Iba S, Moriya Y, Takahashi Y, Saito M, Maeshima A, Yamada T, Matsuno Y, Fukayama M, Yokota J, Hirohashi S: Frequent co-localization of Cox-2 and laminin-5 gamma2 chain at the invasive front of early-stage lung adenocarcinomas. Am J Pathol 160: 1129–1141, 2002PubMedGoogle Scholar
  16. 16.
    Kosmehl H, Berndt A, Strassburger S, Borsi L, Rousselle P, Mandel U, Hyckel P, Zardi L, Katenkamp D: Distribution of laminin and fibronectin isoforms in oral mucosa and oral squamous cell carcinoma. Br J Cancer 81: 1071–1079, 1999CrossRefPubMedGoogle Scholar
  17. 17.
    Aumailley M, El Khal A, Knoss N, Tunggal L: Laminin 5 processing and its integration into the ECM. Matrix Biol 22: 49–54, 2003PubMedGoogle Scholar
  18. 18.
    Goldfinger LE, Stack MS, Jones JC: Processing of laminin-5 and its functional consequences: Role of plasmin and tissue-type plasminogen activator. J Cell Biol 141: 255–265, 1998PubMedGoogle Scholar
  19. 19.
    Goldfinger LE, Hopkinson SB, deHart GW, Collawn S, Couchman JR, Jones JC: The alpha3 laminin subunit, alpha6beta4 and alpha3beta1 integrin coordinately regulate wound healing in cultured epithelial cells and in the skin. J Cell Sci 112(Pt 16): 2615–2629, 1999PubMedGoogle Scholar
  20. 20.
    Shang M, Koshikawa N, Schenk S, Quaranta V: The LG3 module of laminin-5 harbors a binding site for integrin alpha3beta1 that promotes cell adhesion, spreading, and migration. J Biol Chem 276: 33045–33053, 2001PubMedGoogle Scholar
  21. 21.
    Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta V: Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science 277: 225–228, 1997CrossRefPubMedGoogle Scholar
  22. 22.
    Koshikawa N, Giannelli G, Cirulli V, Miyazaki K, Quaranta V: Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol 148: 615–624, 2000CrossRefPubMedGoogle Scholar
  23. 23.
    Ondruschka C, Buhtz P, Motsch C, Freigang B, Schneider-Stock R, Roessner A, Boltze C: Prognostic value of MMP-2, -9 and TIMP-1,-2 immunoreactive protein at the invasive front in advanced head and neck squamous cell carcinomas. Pathol Res Pract 198: 509–515, 2002PubMedGoogle Scholar
  24. 24.
    Yoshizaki T, Sato H, Maruyama Y, Murono S, Furukawa M, Park CS, Seiki M: Increased expression of membrane type 1-matrix metalloproteinase in head and neck carcinoma. Cancer 79: 139–144, 1997PubMedGoogle Scholar
  25. 25.
    Dumas V, Kanitakis J, Charvat S, Euvrard S, Faure M, Claudy A: Expression of basement membrane antigens and matrix metalloproteinases 2 and 9 in cutaneous basal and squamous cell carcinomas. Anticancer Res 19: 2929–2938, 1999PubMedGoogle Scholar
  26. 26.
    Amano S, Scott IC, Takahara K, Koch M, Champliaud MF, Gerecke DR, Keene DR, Hudson DL, Nishiyama T, Lee S, Greenspan DS, Burgeson RE: Bone morphogenetic protein 1 is an extracellular processing enzyme of the laminin 5 gamma 2 chain. J Biol Chem 275: 22728–22735, 2000PubMedGoogle Scholar
  27. 27.
    Veitch DP, Nokelainen P, McGowan KA, Nguyen TT, Nguyen NE, Stephenson R, Pappano WN, Keene DR, Spong SM, Greenspan DS, Findell PR, Marinkovich MP: Mammalian tolloid metalloproteinase, and not matrix metalloprotease 2 or membrane type 1 metalloprotease, processes laminin-5 in keratinocytes and skin. J Biol Chem 278: 15661–15668, 2003PubMedGoogle Scholar
  28. 28.
    Baker SE, Hopkinson SB, Fitchmun M, Andreason GL, Frasier F, Plopper G, Quaranta V, Jones JC: Laminin-5 and hemidesmosomes: role of the alpha 3 chain subunit in hemidesmosome stability and assembly. J Cell Sci 109(Pt 10): 2509–2520, 1996PubMedGoogle Scholar
  29. 29.
    Mizushima H, Takamura H, Miyagi Y, Kikkawa Y, Yamanaka N, Yasumitsu H, Misugi K, Miyazaki K: Identification of integrin-dependent and -independent cell adhesion domains in COOH-terminal globular region of laminin-5 alpha 3 chain. Cell Growth Differ 8: 979–987, 1997PubMedGoogle Scholar
  30. 30.
    DiPersio CM, Hodivala-Dilke KM, Jaenisch R, Kreidberg JA, Hynes RO: alpha3beta1 Integrin is required for normal development of the epidermal basement membrane. J Cell Biol 137: 729–742, 1997PubMedGoogle Scholar
  31. 31.
    Carter WG, Ryan MC, Gahr PJ: Epiligrin, a new cell adhesion ligand for integrin alpha 3 beta 1 in epithelial basement membranes. Cell 65: 599–610, 1991PubMedGoogle Scholar
  32. 32.
    Gonzales M, Haan K, Baker SE, Fitchmun M, Todorov I, Weitzman S, Jones JC: A cell signal pathway involving laminin-5, alpha3beta1 integrin, and mitogen-activated protein kinase can regulate epithelial cell proliferation. Mol Biol Cell 10: 259–270, 1999PubMedGoogle Scholar
  33. 33.
    Zhang K, Kim JP, Woodley DT, Waleh NS, Chen YQ, Kramer RH: Restricted expression and function of laminin 1-binding integrins in normal and malignant oral mucosal keratinocytes. Cell Adhes. Commun 4: 159–174, 1996PubMedGoogle Scholar
  34. 34.
    Jones J, Sugiyama M, Giancotti F, Speight PM, Watt FM: Transfection of beta 4 integrin subunit into a neoplastic keratinocyte line fails to restore terminal differentiation capacity or influence proliferation. Cell Adhes Commun 4: 307–316, 1996PubMedGoogle Scholar
  35. 35.
    Mercurio AM, Rabinovitz I, Shaw LM: The alpha6beta4 integrin and epithelial cell migration. Curr Opin Cell Biol 13: 541–545, 2001PubMedGoogle Scholar
  36. 36.
    Rabinovitz I, Mercurio AM: The integrin alpha6beta4 functions in carcinoma cell migration on laminin-1 by mediating the formation and stabilization of actin-containing motility structures. J Cell Biol 139: 1873–1884, 1997PubMedGoogle Scholar
  37. 37.
    Lauffenburger DA, Horwitz AF: Cell migration: A physically integrated molecular process. Cell 84: 359–369, 1996CrossRefPubMedGoogle Scholar
  38. 38.
    Ridley AJ, Schwartz MA, Burridge K, Firtel RA, Ginsberg MH, Borisy G, Parsons JT, Horwitz AR: Cell migration: integrating signals from front to back. Science 302: 1704–1709, 2003CrossRefPubMedGoogle Scholar
  39. 39.
    Horwitz R, Webb D: Cell migration. Curr Biol 13: R756–759, 2003PubMedGoogle Scholar
  40. 40.
    Raftopoulou M, Hall A: Cell migration: Rho GTPases lead the way. Dev Biol 265: 23–32, 2004PubMedGoogle Scholar
  41. 41.
    Kawano K, Kantak S, Murai M, Yao C-C, Kramer R: Integrin alpha 3 beta 1 engagement disrupts intercellular adhesion. Exp. Cell Res. 262: 180–196, 2001PubMedGoogle Scholar
  42. 42.
    Zhou H, Kramer RH: Rho small GTPases in cell motility in squamous cell carcinoma Mol Biol Cell 14: 469a, 2003.Google Scholar
  43. 43.
    Hordijk PL, ten Klooster JP, van der Kammen RA, Michiels F, Oomen LC, Collard JG: Inhibition of invasion of epithelial cells by Tiam1-Rac signaling. Science 278: 1464–1466, 1997PubMedGoogle Scholar
  44. 44.
    Michiels F, Habets GG, Stam JC, van der Kammen RA, Collard JG: A role for Rac in Tiam1-induced membrane ruffling and invasion. Nature 375: 338–340, 1995PubMedGoogle Scholar
  45. 45.
    Stam JC, Michiels F, van der Kammen RA, Moolenaar WH, Collard JG: Invasion of T-lymphoma cells: Cooperation between Rho family GTPases and lysophospholipid receptor signaling. Embo J 17: 4066–4074, 1998CrossRefPubMedGoogle Scholar
  46. 46.
    Evers EE, van der Kammen RA, ten Klooster JP, Collard JG: Rho-like GTPases in tumor cell invasion. Methods Enzymol 325: 403–415, 2000CrossRefPubMedGoogle Scholar
  47. 47.
    Zondag GC, Evers EE, ten Klooster JP, Janssen L, van der Kammen RA, Collard JG: Oncogenic Ras downregulates Rac activity, which leads to increased Rho activity and epithelial-mesenchymal transition. J Cell Biol 149: 775–782, 2000PubMedGoogle Scholar
  48. 48.
    Abraham MT, Kuriakose MA, Sacks PG, Yee H, Chiriboga L, Bearer EL, Delacure MD: Motility-related proteins as markers for head and neck squamous cell cancer. Laryngoscope 111: 1285–1289, 2001PubMedGoogle Scholar
  49. 49.
    van Golen KL, Wu ZF, Qiao XT, Bao LW, Merajver SD: RhoC GTPase, a novel transforming oncogene for human mammary epithelial cells that partially recapitulates the inflammatory breast cancer phenotype. Cancer Res 60: 5832–5838, 2000PubMedGoogle Scholar
  50. 50.
    Liu A, Du W, Liu JP, Jessell TM, Prendergast GC: RhoB alteration is necessary for apoptotic and antineoplastic responses to farnesyltransferase inhibitors. Mol Cell Biol 20: 6105–6113, 2000PubMedGoogle Scholar
  51. 51.
    Liu AX, Rane N, Liu JP, Prendergast GC: RhoB is dispensable for mouse development, but it modifies susceptibility to tumor formation as well as cell adhesion and growth factor signaling in transformed cells. Mol Cell Biol 21: 6906–6912, 2001Google Scholar
  52. 52.
    Mira JP, Benard V, Groffen J, Sanders LC, Knaus UG: Endogenous, hyperactive Rac3 controls proliferation of breast cancer cells by a p21-activated kinase-dependent pathway. Proc Natl Acad Sci USA 97: 185–189, 2000PubMedGoogle Scholar
  53. 53.
    Malliri A, van der Kammen RA, Clark K, van der Valk M, Michiels F, Collard JG: Mice deficient in the Rac activator Tiam1 are resistant to Ras-induced skin tumours. Nature 417: 867–871, 2002PubMedGoogle Scholar
  54. 54.
    Wang DZ, Nur EKMS, Tikoo A, Montague W, Maruta H: The GTPase and Rho GAP domains of p190, a tumor suppressor protein that binds the M(r) 120,000 Ras GAP, independently function as anti-Ras tumor suppressors. Cancer Res 57: 2478–2484, 1997PubMedGoogle Scholar
  55. 55.
    Tikoo A, Czekay S, Viars C, White S, Heath JK, Arden K, Maruta H: p190-A, a human tumor suppressor gene, maps to the chromosomal region 19q13.3 that is reportedly deleted in some gliomas. Gene 257: 23–31, 2000Google Scholar
  56. 56.
    Kuroda S, Fukata M, Nakagawa M, Fujii K, Nakamura T, Ookubo T, Izawa I, Nagase T, Nomura N, Tani H, Shoji I, Matsuura Y, Yonehara S, Kaibuchi K: Role of IQGAP1, a target of the small GTPases Cdc42 and Rac1, in regulation of E-cadherin-mediated cell-cell adhesion. Science 281: 832–835, 1998PubMedGoogle Scholar
  57. 57.
    Ho YD, Joyal JL, Li Z, Sacks DB: IQGAP1 integrates Ca2+/calmodulin and Cdc42 signaling. J Biol Chem 274: 464–470, 1999PubMedGoogle Scholar
  58. 58.
    Swart-Mataraza JM, Li Z, Sacks DB: IQGAP1 is a component of Cdc42 signaling to the cytoskeleton. J Biol Chem 277: 24753–24763, 2002PubMedGoogle Scholar
  59. 59.
    Manser E, Lim L: Roles of PAK family kinases. Prog Mol Subcell Biol 22: 115–133, 1999PubMedGoogle Scholar
  60. 60.
    Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A, Chernoff J, Hung MC, Kumar R: Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275: 36238-36244, 2000PubMedGoogle Scholar
  61. 61.
    McMullan R, Lax S, Robertson VH, Radford DJ, Broad S, Watt FM, Rowles A, Croft DR, Olson MF, Hotchin NA: Keratinocyte differentiation is regulated by the Rho and ROCK signaling pathway. Curr Biol 13: 2185–2189, 2003PubMedGoogle Scholar
  62. 62.
    Kamai T, Tsujii T, Arai K, Takagi K, Asami H, Ito Y, Oshima H: Significant association of Rho/ROCK pathway with invasion and metastasis of bladder cancer. Clin Cancer Res 9: 2632–2641, 2003PubMedGoogle Scholar
  63. 63.
    Nakajima M, Hayashi K, Egi Y, Katayama K, Amano Y, Uehata M, Ohtsuki M, Fujii A, Oshita K, Kataoka H, Chiba K, Goto N, Kondo T: Effect of Wf-536, a novel ROCK inhibitor, against metastasis of B16 melanoma. Cancer Chemother Pharmacol 52: 319–324, 2003PubMedGoogle Scholar
  64. 64.
    Nishimura Y, Itoh K, Yoshioka K, Tokuda K, Himeno M: Overexpression of ROCK in human breast cancer cells: Evidence that ROCK activity mediates intracellular membrane traffic of lysosomes. Pathol Oncol Res 9: 83–95, 2003PubMedCrossRefGoogle Scholar
  65. 65.
    Sahai E, Marshall CJ: Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signalling and extracellular proteolysis. Nat Cell Biol 5: 711–719, 2003PubMedGoogle Scholar
  66. 66.
    Gumbiner BM: Cell adhesion: The molecular basis of tissue architecture and morphogenesis. Cell 84: 345–357, 1996PubMedGoogle Scholar
  67. 67.
    Takeichi M: Cadherin cell adhesion receptors as a morphogenetic regulator. Science 251: 1451–1455, 1991PubMedGoogle Scholar
  68. 68.
    Nelson WJ, Nusse R: Convergence of Wnt, beta-catenin, and cadherin pathways. Science 303: 1483–1487, 2004CrossRefPubMedGoogle Scholar
  69. 69.
    Yap AS, Niessen CM, Gumbiner BM: The juxtamembrane region of the cadherin cytoplasmic tail supports lateral clustering, adhesive strengthening, and interaction with p120ctn. J Cell Biol 141: 779–789, 1998Google Scholar
  70. 70.
    Navarro P, Gomez M, Pizarro A, Gamallo C, Quintanilla M, Cano A: A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J Cell Biol 115: 517–533, 1991PubMedGoogle Scholar
  71. 71.
    Andrews NA, Jones AS, Helliwell TR, Kinsella AR: Expression of the E-cadherin-catenin cell adhesion complex in primary squamous cell carcinomas of the head and neck and their nodal metastases. Br J Cancer 75: 1474–1480, 1997PubMedGoogle Scholar
  72. 72.
    Bowie GL, Caslin AW, Roland NJ, Field JK, Jones AS, Kinsella AR: Expression of the cell-cell adhesion molecule E-cadherin in squamous cell carcinoma of the head and neck. Clin Otolaryngol 18: 196–201, 1993PubMedCrossRefGoogle Scholar
  73. 73.
    Lango MN, Shin DM, Grandis JR: Targeting growth factor receptors: integration of novel therapeutics in the management of head and neck cancer. Curr Opin Oncol 13: 168–175, 2001PubMedGoogle Scholar
  74. 74.
    Mattijssen V, Peters HM, Schalkwijk L, Manni JJ, van’t Hof-Grootenboer B, de Mulder PH, Ruiter DJ: E-cadherin expression in head and neck squamous-cell carcinoma is associated with clinical outcome. Int J Cancer 55: 580–585, 1993PubMedGoogle Scholar
  75. 75.
    Wong AS, Gumbiner BM: Adhesion-independent mechanism for suppression of tumor cell invasion by E-cadherin. J Cell Biol 161: 1191–1203, 2003PubMedGoogle Scholar
  76. 76.
    Yamada KM, Geiger B: Molecular interactions in cell adhesion complexes. Curr Opin Cell Biol 9: 76–85, 1997PubMedGoogle Scholar
  77. 77.
    Pollack AL, Barth AI, Altschuler Y, Nelson WJ, Mostov KE: Dynamics of beta-catenin interactions with APC protein regulate epithelial tubulogenesis. J Cell Biol 137: 1651–1662, 1997CrossRefPubMedGoogle Scholar
  78. 78.
    Tao YS, Edwards RA, Tubb B, Wang S, Bryan J, McCrea PD: Beta-Catenin associates with the actin-bundling protein fascin in a noncadherin complex. J Cell Biol 134: 1271–1281, 1996Google Scholar
  79. 79.
    Hoschuetzky H, Aberle H, Kemler R: Beta-catenin mediates the interaction of the cadherin-catenin complex with epidermal growth factor receptor. J Cell Biol 127: 1375–1380, 1994PubMedGoogle Scholar
  80. 80.
    Shibata T, Ochiai A, Kanai Y, Akimoto S, Gotoh M, Yasui N, Machinami R, Hirohashi S: Dominant-negative inhibition of the association between beta-catenin and c-34B-2 by N-terminally deleted beta-catenin suppresses the invasion and metastasis of cancer cells. Oncogene 13: 883–889, 1996PubMedGoogle Scholar
  81. 81.
    Pece S, Chiariello M, Murga C, Gutkind J: Activation of the protein kinase Akt/PKB by the formation of E-cadherin-mediated cell-cell junctions. Evidence for the association of phosphatidylinositol 3-kinase with the E-cadherin adhesion complex. J Biol Chem 274: 19347–19351, 1999PubMedGoogle Scholar
  82. 82.
    Pece S, Gutkind JS: Signaling from E-cadherins to the MAPK pathway by the recruitment and activation of epidermal growth factor receptors upon cell-cell contact formation. J Biol Chem 275: 41227–41233, 2000PubMedGoogle Scholar
  83. 83.
    Xu Y, Guo DF, Davidson M, Inagami T, Carpenter G: Interaction of the adaptor protein Shc and the adhesion molecule cadherin. J Biol Chem 272: 13463–13466, 1997PubMedGoogle Scholar
  84. 84.
    Ilic D, Damsky CH: Integrin signaling-it’s where the action is. Curr Opin Cell Biol (in press): 2002Google Scholar
  85. 85.
    Juliano RL: Signal transduction by cell adhesion receptors and the cytoskeleton: Functions of integrins, cadherins, selectins, and immunoglobulin-superfamily members. Annu Rev Pharmacol Toxicol 42: 283–323, 2002PubMedGoogle Scholar
  86. 86.
    St Croix B, Florenes VA, Rak JW, Flanagan M, Bhattacharya N, Slingerland JM, Kerbel RS: Impact of the cyclin-dependent kinase inhibitor p27Kip1 on resistance of tumor cells to anticancer agents. Nat Med 2: 1204–1210, 1996PubMedGoogle Scholar
  87. 87.
    St Croix B, Kerbel RS: Cell adhesion and drug resistance in cancer. Curr Opin Oncol 9: 549–556, 1997PubMedGoogle Scholar
  88. 88.
    Day M, Zhao X, Vallorosi C, Putzi M, Powell C, Lin C, Day K: E-cadherin mediates aggregation-dependent survival of prostate and mammary epithelial cells through the retinoblastoma cell cycle control pathway. J Biol Chem 274: 9656–9664, 1999PubMedGoogle Scholar
  89. 89.
    Khwaja A, Rodriguez-Viciana P, Wennstrom S, Warne PH, Downward J: Matrix adhesion and Ras transformation both activate a phosphoinositide 3-OH kinase and protein kinase B/Akt cellular survival pathway. Embo J 16: 2783–2793, 1997PubMedGoogle Scholar
  90. 90.
    Rosen K, Rak J, Leung T, Dean NM, Kerbel RS, Filmus J: Activated Ras prevents downregulation of Bcl-X(L) triggered by detachment from the extracellular matrix. A mechanism of Ras-induced resistance to anoikis in intestinal epithelial cells. J Cell Biol 149: 447–456, 2000PubMedGoogle Scholar
  91. 91.
    Jost M, Huggett TM, Kari C, Rodeck U: Matrix-independent survival of human keratinocytes through an EGF receptor/MAPK-kinase-dependent pathway. Mol Biol Cell 12: 1519–1527, 2001PubMedGoogle Scholar
  92. 92.
    Tran NL, Adams DG, Vaillancourt RR, Heimark RL: Signal transduction from N-cadherin increases Bcl-2. Regulation of the phosphatidylinositol 3-kinase/Akt pathway by homophilic adhesion and actin cytoskeletal organization. J Biol Chem 277: 32905–32914, 2002PubMedGoogle Scholar
  93. 93.
    Kantak SS, Kramer RH: E-cadherin regulates anchorage-independent growth and survival in oral squamous cell carcinoma cells. J Biol Chem 273: 16953–16961, 1998PubMedGoogle Scholar
  94. 94.
    Shen X, Kramer RH: Adhesion-mediated squamous cell carcinoma survival through ligand-independent activation of epidermal growth factor receptor. Am J Pathol 165: 1315–1329, 2004PubMedGoogle Scholar
  95. 95.
    Shinohara M, Kodama A, Matozaki T, Fukuhara A, Tachibana K, Nakanishi H, Takai Y: Roles of cell-cell adhesion-dependent tyrosine phosphorylation of Gab-1. J Biol Chem 276: 18941–18946, 2001PubMedGoogle Scholar
  96. 96.
    Arregui C, Pathre P, Lilien J, Balsamo J: The nonreceptor tyrosine kinase fer mediates cross-talk between N-cadherin and beta1-integrins. J Cell Biol 149: 1263–1274, 2000PubMedGoogle Scholar
  97. 97.
    Yamada K, Jordan R, Mori M, Speight PM: The relationship between E-cadherin expression, clinical stage and tumour differentiation in oral squamous cell carcinoma. Oral Dis 3: 82–85, 1997PubMedCrossRefGoogle Scholar
  98. 98.
    Todd R, Wong DT: Epidermal growth factor receptor (EGFR) biology and human oral cancer. Histol Histopathol 14: 491–500, 1999PubMedGoogle Scholar
  99. 99.
    Bei R, Pompa G, Vitolo D, Moriconi E, Ciocci L, Quaranta M, Frati L, Kraus MH, Muraro R: Co-localization of multiple ErbB receptors in stratified epithelium of oral squamous cell carcinoma. J Pathol 195: 343–348, 2001PubMedGoogle Scholar
  100. 100.
    Ruoslahti E: Fibronectin and its integrin receptors in cancer. Adv Cancer Res 76: 1–20, 1999PubMedCrossRefGoogle Scholar
  101. 101.
    Mahoney MG, Simpson A, Jost M, Noe M, Kari C, Pepe D, Choi YW, Uitto J, Rodeck U: Metastasis-associated protein (MTA)1 enhances migration, invasion, and anchorage-independent survival of immortalized human keratinocytes. Oncogene 21: 2161–2170, 2002PubMedGoogle Scholar
  102. 102.
    Zhu Z, Sanchez-Sweatman O, Huang X, Wiltrout R, Khokha R, Zhao Q, Gorelik E: Anoikis and metastatic potential of cloudman S91 melanoma cells. Cancer Res 61: 1707–1716, 2001PubMedGoogle Scholar
  103. 103.
    Swan EA, Jasser SA, Holsinger FC, Doan D, Bucana C, Myers JN: Acquisition of anoikis resistance is a critical step in the progression of oral tongue cancer. Oral Oncol 39: 648–655, 2003PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Head and Neck Oncology Program, Departments of Cell and Tissue Biology, and Anatomy, and AnatomyUniversity of California San FranciscoSan Francisco

Personalised recommendations