Cancer and Metastasis Reviews

, Volume 24, Issue 2, pp 223–236 | Cite as

Activated leukocyte cell adhesion molecule (ALCAM/CD166): Signaling at the divide of melanoma cell clustering and cell migration?

  • Guido W. M. Swart
  • Pim C. Lunter
  • Jeroen W. J. van Kilsdonk
  • Leon C. L. T. van Kempen
Article

Abstract

Orchestrated modulation of cell adhesion is essential for development and homeostasis in multicellular organisms. It optimizes embedding of the cell in its dynamic environment and facilitates appropriate cell responses and intercellular communication. Chronic disturbance of this delicate equilibrium causes defects in tissue architecture and sometimes cancer. In tumor cell biology, dynamic control of adhesion molecules is important to proceed through the metastatic cascade and to allow cell release from the primary tumor, invasion of the surrounding matrix, intravasation and adhesion to vascular endothelial cells to facilitate extravasation. Intertwined and multiple adhesive interactions rather than individual interactions presumably play critical roles in neoplastic development. Yet, knowledge of the contribution of each individual adhesion molecule is essential to unravel this network of interactions. This review will focus on activated leukocyte cell adhesion molecule (ALCAM/CD166) and its role in human melanoma progression. It is hypothesized that ALCAM may function as a cell surface sensor to register local growth saturation and to regulate cellular signaling and dynamic responses.

Key words

cell adhesion invasive growth cytoskeleton proteolysis protein kinase C Rho-like GTPases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hsu MY, Meier F, Herlyn M: Melanoma development and progression: A conspiracy between tumor and host. Differentiation 70: 522–536, 2002Google Scholar
  2. 2.
    McGary EC, Lev DC, Bar-Eli M: Cellular adhesion pathways and metastatic potential of human melanoma. Cancer Biol Ther 1: 459–465, 2002Google Scholar
  3. 3.
    Kadmon G, Montgomery AM, Altevogt P: L1 makes immunological progress by expanding its relations. Dev Immunol 6: 205–213, 1998Google Scholar
  4. 4.
    Hendrix MJ, Seftor EA, Meltzer PS, Gardner LM, Hess AR, Kirschmann DA, Schatteman GC, Seftor RE: Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proc Natl Acad Sci USA 98: 8018–8023, 2001Google Scholar
  5. 5.
    Li G, Satyamoorthy K, Meier F, Berking C, Bogenrieder T, Herlyn M: Function and regulation of melanoma-stromal fibroblast interactions: When seeds meet soil. Oncogene 22: 3162–3171, 2003Google Scholar
  6. 6.
    Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 100: 57–70, 2000Google Scholar
  7. 7.
    van Muijen GN, Cornelissen LM, Jansen CF, Figdor CG, Johnson JP, Brocker EB, Ruiter DJ: Antigen expression of metastasizing and non-metastasizing human melanoma cells xenografted into nude mice. Clin Exp Metastasis 9: 259–272, 1991Google Scholar
  8. 8.
    van Muijen GN, Jansen KF, Cornelissen IM, Smeets, DF, Beck JL, Ruiter DJ: Establishment and characterization of a human melanoma cell line (MV3) which is highly metastatic in nude mice. Int J Cancer 48: 85–91, 1991Google Scholar
  9. 9.
    Westphal JR, Van’t Hullenaar R, Peek R, Willems RW, Crickard K, Crickard U, Askaa J, Clemmensen I, Ruiter DJ, De Waal RM: Angiogenic balance in human melanoma: Expression of VEGF, bFGF, IL-8, PDGF and angiostatin in relation to vascular density of xenografts in vivo. Int J Cancer 86: 768–776, 2000Google Scholar
  10. 10.
    Albelda SM, Mette SA, Elder DE, Stewart R, Damjanovich L, Herlyn M, Buck CA: Integrin distribution in malignant melanoma: Association of the beta 3 subunit with tumor progression. Cancer Res 50: 6757–6764, 1990Google Scholar
  11. 11.
    Danen EH, van Kraats AA, Cornelissen IM, Ruiter DJ, van Muijen GN: Integrin beta 3 cDNA transfection into a highly metastatic alpha v beta 3-negative human melanoma cell line inhibits invasion and experimental metastasis. Biochem Biophys Res Commun 226: 75–81, 1996Google Scholar
  12. 12.
    Shih IM: The role of CD146 (Mel-CAM) in biology and pathology. J Pathol 189: 4–11, 1999Google Scholar
  13. 13.
    Lehmann JM, Riethmuller G, Johnson JP: MUC18, a marker of tumor progression in human melanoma, shows sequence similarity to the neural cell adhesion molecules of the immunoglobulin superfamily. Proc Natl Acad Sci USA 86: 9891–9895, 1989Google Scholar
  14. 14.
    van Kempen LC, van den Oord JJ, van Muijen GN, Weidle UH, Bloemers HP, Swart GW: Activated leukocyte cell adhesion molecule/CD166, a marker of tumor progression in primary malignant melanoma of the skin. Am J Pathol 156: 769–774, 2000Google Scholar
  15. 15.
    Fogel M, Mechtersheimer S, Huszar M, Smirnov A, Abu-Dahi A, Tilgen W, Reichrath J, Georg T, Altevogt P, Gutwein P: L1 adhesion molecule (CD 171) in development and progression of human malignant melanoma. Cancer Lett 189: 237–247, 2003Google Scholar
  16. 16.
    Thies A, Schachner M, Moll I, Berger J, Schulze HJ, Brunner G, Schumacher U: Overexpression of the cell adhesion molecule L1 is associated with metastasis in cutaneous malignant melanoma. Eur J Cancer 38: 1708–1716, 2002Google Scholar
  17. 17.
    Hieken TJ, Ronan SG, Farolan M, Shilkaitis AL, Das Gupta TK: Molecular prognostic markers in intermediate-thickness cutaneous malignant melanoma. Cancer 85: 375–382, 1999Google Scholar
  18. 18.
    Felding-Habermann B, Fransvea E, O’Toole TE, Manzuk L, Faha B, Hensler M: Involvement of tumor cell integrin alpha v beta 3 in hematogenous metastasis of human melanoma cells. Clin Exp Metastasis 19: 427–436, 2002Google Scholar
  19. 19.
    Seftor EA, Meltzer PS, Schatteman GC, Gruman LM, Hess AR, Kirschmann DA, Seftor RE, Hendrix MJ: Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: Role in vasculogenic mimicry. Crit Rev Oncol Hematol 44: 17–27, 2002Google Scholar
  20. 20.
    Danen EH, de Vries TJ, Morandini R, Ghanem GG, Ruiter DJ, van Muijen GN: E-cadherin expression in human melanoma. Melanoma Res 6: 127–131, 1996Google Scholar
  21. 21.
    Weeraratna AT, Becker D, Carr KM, Duray PH, Rosenblatt KP, Yang S, Chen Y, Bittner M, Strausberg RL, Riggins GJ, Wagner U, Kallioniemi OP, Trent JM, Morin PJ, Meltzer PS: Generation and analysis of melanoma SAGE libraries: SAGE advice on the melanoma transcriptome. Oncogene 23: 2264–2274, 2004Google Scholar
  22. 22.
    Albelda SM, Smith CW, Ward PA: Adhesion molecules and inflammatory injury. Faseb J 8: 504–512, 1994Google Scholar
  23. 23.
    Giavazzi R, Foppolo M, Dossi R, Remuzzi A: Rolling and adhesion of human tumor cells on vascular endothelium under physiological flow conditions. J Clin Invest 92: 3038–3044, 1993Google Scholar
  24. 24.
    Voura EB, Sandig M, Kalnins VI, Siu C: Cell shape changes and cytoskeleton reorganization during transendothelial migration of human melanoma cells. Cell Tissue Res 293: 375–387, 1998Google Scholar
  25. 25.
    Sandig M, Voura EB, Kalnins VI, Siu CH: Role of cadherins in the transendothelial migration of melanoma cells in culture. Cell Motil Cytoskeleton 38: 351–364, 1997Google Scholar
  26. 26.
    Voura EB, Ramjeesingh RA, Montgomery AM, Siu CH: Involvement of integrin alpha(v)beta(3) and cell adhesion molecule L1 in transendothelial migration of melanoma cells. Mol Biol Cell 12: 2699–2710, 2001Google Scholar
  27. 27.
    King JA, Al-Mehdi AB, Ofori-Acquah S, Stevens T: Role of ALCAM in interaction of breast cancer metastases and the endothelium of the lung (Abstract). FASEB J 18: A330, 2004Google Scholar
  28. 28.
    King J, Ofori-Acquah S, Stevens T, Al-Mehdi AB: Potential role for activated leukocyte cell adhesion molecule and neural cadherin in metastasis to the lung microcirculation (Abstract). Chest 125: 150S–151S, 2004Google Scholar
  29. 29.
    Patel DD, Wee SF, Whichard LP, Bowen MA, Pesando JM, Aruffo A, Haynes BF: Identification and characterization of a 100-kD ligand for CD6 on human thymic epithelial cells. J Exp Med 181: 1563–1568, 1995Google Scholar
  30. 30.
    Uchida N, Yang Z, Combs J, Pourquie O, Nguyen M, Ramanathan R, Fu J, Welply A, Chen S, Weddell G, Sharma AK, Leiby KR, Karagogeos D, Hill B, Humeau L, Stallcup WB, Hoffman R, Tsukamoto AS, Gearing DP, Peault B: The characterization, molecular cloning, and expression of a novel hematopoietic cell antigen from CD34+ human bone marrow cells. Blood 89: 2706–2716, 1997Google Scholar
  31. 31.
    Bruder SP, Ricalton NS, Boynton RE, Connolly TJ, Jaiswal N, Zaia J, Barry FP: Mesenchymal stem cell surface antigen SB-10 corresponds to activated leukocyte cell adhesion molecule and is involved in osteogenic differentiation. J Bone Miner Res 13: 655–663, 1998Google Scholar
  32. 32.
    Ohneda O, Ohneda K, Arai F, Lee J, Miyamoto T, Fukushima Y, Dowbenko D, Lasky LA, Suda T: ALCAM (CD166): Its role in hematopoietic and endothelial development. Blood 98: 2134–2142, 2001Google Scholar
  33. 33.
    Swart GW: Activated leukocyte cell adhesion molecule (CD166/ALCAM): Developmental and mechanistic aspects of cell clustering and cell migration. Eur J Cell Biol 81: 313–321, 2002Google Scholar
  34. 34.
    Zhang Y, Li C, Jiang X, Zhang S, Wu Y, Liu B, Tang P, Mao N: Human placenta-derived mesenchymal progenitor cells support culture expansion of long-term culture-initiating cells from cord blood CD34(+) cells. Exp Hematol 32: 657–664, 2004Google Scholar
  35. 35.
    Lee MW, Choi J, Yang MS, Moon YJ, Park JS, Kim HC, Kim YJ: Mesenchymal stem cells from cryopreserved human umbilical cord blood. Biochem Biophys Res Commun 320: 273–278, 2004Google Scholar
  36. 36.
    Sammons J, Ahmed N, El-Sheemy M, Hassan HT: he Role of BMP-6, IL-6, and BMP-4 in Mesenchymal Stem Cell-Dependent Bone Development: Effects on Osteoblastic Differentiation Induced by Parathyroid Hormone and Vitamin D(3). Stem Cells Dev 13: 273–280, 2004Google Scholar
  37. 37.
    Oswald J, Boxberger S, Jorgensen B, Feldmann S, Ehninger G, Bornhauser M, Werner C: Mesenchymal stem cells can be differentiated into endothelial cells in vitro. Stem Cells 22: 377-384, 2004Google Scholar
  38. 38.
    Alsalameh S, Amin R, Gemba T, Lotz M: Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50: 1522–1532, 2004Google Scholar
  39. 39.
    Fickert S, Fiedler J, Brenner RE: Identification, quantification and isolation of mesenchymal progenitor cells from osteoarthritic synovium by fluorescence automated cell sorting. Osteoarthritis Cartilage 11: 790–800, 2003Google Scholar
  40. 40.
    in ‘t Anker PS, Noort WA, Scherjon SA, Kleijburg-van der Keur C, Kruisselbrink AB, van Bezooijen RL, Beekhuizen W, Willemze R, Kanhai HH, Fibbe WE: Mesenchymal stem cells in human second-trimester bone marrow, liver, lung, and spleen exhibit a similar immunophenotype but a heterogeneous multilineage differentiation potential. Haematologica 88: 845–852, 2003Google Scholar
  41. 41.
    Kobune M, Kawano Y, Ito Y, Chiba H, Nakamura K, Tsuda H, Sasaki K, Dehari H, Uchida H, Honmou O, Takahashi S, Bizen A, Takimoto R, Matsunaga T, Kato J, Kato K, Houkin K, Niitsu Y, Hamada H: Telomerized human multipotent mesenchymal cells can differentiate into hematopoietic and cobblestone area-supporting cells. Exp Hematol 31: 715–722, 2003Google Scholar
  42. 42.
    Seshi B, Kumar S, Sellers D: Human bone marrow stromal cell: coexpression of markers specific for multiple mesenchymal cell lineages. Blood Cells Mol Dis 26: 234–246, 2000Google Scholar
  43. 43.
    Guo Z, Yang J, Liu X, Li X, Hou C, Tang PH, Mao N: Biological features of mesenchymal stem cells from human bone marrow. Chin Med J (Engl) 114: 950–953, 2001Google Scholar
  44. 44.
    Arai F, Ohneda O, Miyamoto T, Zhang XQ, Suda T: Mesenchymal stem cells in perichondrium express activated leukocyte cell adhesion molecule and participate in bone marrow formation. J Exp Med 195: 1549–1563, 2002Google Scholar
  45. 45.
    Gotherstrom C, Ringden O, Westgren M, Tammik C, Le Blanc K: Immunomodulatory effects of human foetal liver-derived mesenchymal stem cells Bone. Marrow Transplant 32: 265–272, 2003Google Scholar
  46. 46.
    Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O: Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57: 11–20, 2003Google Scholar
  47. 47.
    Stewart K, Monk P, Walsh S, Jefferiss CM, Letchford J, Beresford JN: STRO-1, HOP-26 (CD63), CD49a and SB-10 (CD166) as markers of primitive human marrow stromal cells and their more differentiated progeny: a comparative investigation in vitro. Cell Tissue Res 313: 281–290, 2003Google Scholar
  48. 48.
    Fujiwara H, Tatsumi K, Kosaka K, Sato Y, Higuchi T, Yoshioka S, Maeda M, Ueda M, Fujii S: Human blastocysts and endometrial epithelial cells express activated leukocyte cell adhesion molecule (ALCAM/CD166). J Clin Endocrinol Metab 88: 3437–3443, 2003Google Scholar
  49. 49.
    Friedl P: Collective cell migration in morphogenesis and cancer. Int J Dev Biol 48: 2004 (in press)Google Scholar
  50. 50.
    Tomita K, van Bokhoven A, Jansen CF, Kiemeney LA, Karthaus HF, Vriesema J, Bussemakers MJ, Witjes A, Schalken JA: Activated Leukocyte Cell Adhesion Molecule (ALCAM) expression is associated with a poor prognosis for bladder cancer patients. UroOncology 3: 121–129, 2003Google Scholar
  51. 51.
    Ernst T, Hergenhahn M, Kenzelmann M, Cohen CD, Bonrouhi M, Weninger A, Klaren R, Grone EF, Wiesel M, Gudemann C, Kuster J, Schott W, Staehler G, Kretzler M, Hollstein M, Grone HJ: Decrease and gain of gene expression are equally discriminatory markers for prostate carcinoma: A gene expression analysis on total and microdissected prostate tissue. Am J Pathol 160: 2169–2180, 2002Google Scholar
  52. 52.
    Kristiansen G, Pilarsky C, Wissmann C, Stephan C, Weissbach L, Loy V, Loening S, Dietel M, Rosenthal A: ALCAM/CD166 is up-regulated in low-grade prostate cancer and progressively lost in high-grade lesions. Prostate 54: 34–43, 2003Google Scholar
  53. 53.
    Stamey TA, Warrington A, Caldwell MC, Chen Z, Fan Z, Mahadevappa M, McNeal JE, Nolley R, Zhang Z: Molecular genetic profiling of Gleason grade 4/5 prostate cancers compared to benign prostatic hyperplasia. J Urol 166: 2171–2177, 2001Google Scholar
  54. 54.
    King JA, Ofori-Acquah SF, Stevens T, Al-Mehdi AB, Fodstad O, Jiang WG: Activated leukocyte cell adhesion molecule in breast cancer: Prognostic indicator. Breast Cancer Res 6: R478–R487, 2004Google Scholar
  55. 55.
    Bowen MA, Aruffo AA, Bajorath J: Cell surface receptors and their ligands: in vitro analysis of CD6-CD166 interactions. Proteins 40: 420–428, 2000Google Scholar
  56. 56.
    Campbell IG, Foulkes WD, Senger G, Trowsdale J, Garin-Chesa P, Rettig WJ: Molecular cloning of the B-CAM cell surface glycoprotein of epithelial cancers: A novel member of the immunoglobulin superfamily. Cancer Res 54: 5761–5765, 1994Google Scholar
  57. 57.
    Parsons SF, Spring FA, Chasis JA, Anstee DJ: Erythroid cell adhesion molecules Lutheran and LW in health and disease. Baillieres Best Pract Res Clin Haematol 12: 729–745, 1999Google Scholar
  58. 58.
    van Kempen LC, Nelissen JM, Degen WG, Torensma R, Weidle UH, Bloemers HP, Figdor CG, Swart GW: Molecular basis for the homophilic activated leukocyte cell adhesion molecule (ALCAM)-ALCAM interaction. J Biol Chem 276: 25783–25790, 2001Google Scholar
  59. 59.
    Hassan NJ, Barclay AN, Brown MH: Frontline: Optimal T cell activation requires the engagement of CD6 and CD166. Eur J Immunol 34: 930–940, 2004Google Scholar
  60. 60.
    Tomita K, van Bokhoven A, Jansen CF, Bussemakers MJ, Schalken JA: Coordinate recruitment of E-cadherin and ALCAM to cell-cell contacts by alpha-catenin. Biochem Biophys Res Commun 267: 870–874, 2000Google Scholar
  61. 61.
    Umbas R, Isaacs WB, Bringuier PP, Xue Y, Debruyne FM, Schalken JA: Relation between aberrant alpha-catenin expression and loss of E-cadherin function in prostate cancer. Int J Cancer 74: 374–377, 1997Google Scholar
  62. 62.
    Richmond PJ, Karayiannakis AJ, Nagafuchi A, Kaisary AV, Pignatelli M: Aberrant E-cadherin and alpha-catenin expression in prostate cancer: correlation with patient survival. Cancer Res 57: 3189–3193, 1997Google Scholar
  63. 63.
    Nelissen JM, Peters IM, de Grooth BG, van Kooyk Y, Figdor CG: Dynamic regulation of activated leukocyte cell adhesion molecule-mediated homotypic cell adhesion through the actin cytoskeleton. Mol Biol Cell 11: 2057–2068, 2000Google Scholar
  64. 64.
    Zimmerman, AW, Nelissen, JM, Van Emst-De Vries, SE, Willems, PH, De Lange, F, Collard JG, Van Leeuwen FN, Figdor CG: Cytoskeletal restraints regulate homotypic ALCAM-mediated adhesion through PKC{alpha} independently of Rho-like GTPases. J Cell Sci 117: 2841–2852, 2004Google Scholar
  65. 65.
    Oka M, Kageshita T, Ono T, Goto A, Kuroki T, Ichihashi M: Protein kinase C alpha associates with phospholipase D1 and enhances basal phospholipase D activity in a protein phosphorylation-independent manner in human melanoma cells. J Invest Dermatol 121: 69–76, 2003Google Scholar
  66. 66.
    Pollock PM, Cohen-Solal K, Sood R, Namkoong J, Martino JJ, Koganti A, Zhu H, Robbins C, Makalowska I, Shin SS, Marin Y, Roberts KG, Yudt LM, Chen A, Cheng J, Incao A, Pinkett HW, Graham CL, Dunn K, Crespo-Carbone SM, Mackason KR, Ryan, KB, Sinsimer D, Goydos J, Reuhl KR, Eckhaus M, Meltzer PS, Pavan WJ, Trent JM, Chen S: Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplasia. Nat Genet 34: 108–112, 2003Google Scholar
  67. 67.
    Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM: Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1: 279–288, 2002Google Scholar
  68. 68.
    Guasch RM, Scambler P, Jones GE, Ridley AJ: RhoE regulates actin cytoskeleton organization and cell migration. Mol Cell Biol 18: 4761–4771, 1998Google Scholar
  69. 69.
    Aresta S, de Tand-Heim MF, Beranger F, de Gunzburg J: A novel Rho GTPase-activating-protein interacts with Gem, a member of the Ras superfamily of GTPases. Biochem J 367: 57–65, 2002Google Scholar
  70. 70.
    Olson MF: Gem GTPase: Between a ROCK and a hard place. Curr Biol 12: R496–498, 2002Google Scholar
  71. 71.
    Riento K, Guasch RM, Garg R, Jin B, Ridley AJ: RhoE binds to ROCK I and inhibits downstream signaling. Mol Cell Biol 23: 4219–4229, 2003Google Scholar
  72. 72.
    Wennerberg K, Forget MA, Ellerbroek SM, Arthur WT, Burridge K, Settleman J, Der CJ, Hansen SH: Rnd proteins function as RhoA antagonists by activating p190 RhoGAP. Curr Biol 13: 1106–1115, 2003Google Scholar
  73. 73.
    van Kempen LC, Meier F, Egeblad M, Kersten-Niessen MJ, Garbe C, Weidle UH, Van Muijen GN, Herlyn M, Bloemers, HP, and Swart GW: Truncation of activated leukocyte cell adhesion molecule: A gateway to melanoma metastasis. J Invest Dermatol 122: 1293–1301, 2004Google Scholar
  74. 74.
    Degen WG, van Kempen LC, Gijzen EG, van Groningen JJ, van Kooyk Y, Bloemers HP, Swart GW: MEMD, a new cell adhesion molecule in metastasizing human melanoma cell lines, is identical to ALCAM (activated leukocyte cell adhesion molecule). Am J Pathol 152: 805–813, 1998Google Scholar
  75. 75.
    van Groningen JJ, Bloemers HP, Swart GW: Identification of melanoma inhibitory activity and other differentially expressed messenger RNAs in human melanoma cell lines with different metastatic capacity by messenger RNA differential display. Cancer Res 55: 6237–6243, 1995Google Scholar
  76. 76.
    Weterman MA, Stoopen GM, van Muijen GN, Kuznicki J, Ruiter DJ, Bloemers HP: Expression of calcyclin in human melanoma cell lines correlates with metastatic behavior in nude mice Cancer Res 52: 1291–1296, 1992Google Scholar
  77. 77.
    de Wit PE, Moretti S, Koenders PG, Weterman MA, van Muijen GN, Gianotti B, Ruiter DJ: Increasing epidermal growth factor receptor expression in human melanocytic tumor progression. J Invest Dermatol 99: 168–173, 1992Google Scholar
  78. 78.
    van Groningen JJ, Cornelissen TM, van Muijen GN, Bloemers HP, Swart GW: Simultaneous suppression of progression marker genes in the highly malignant human melanoma cell line BLM after transfection with the adenovirus-5 E1A gene. Biochem Biophys Res Commun 225: 808–816, 1996Google Scholar
  79. 79.
    Degen WG, Agterbos MA, Muyrers JP, Bloemers HP, Swart GW: MemA/DRS, a putative mediator of multiprotein complexes, is overexpressed in the metastasizing human melanoma cell lines BLM and MV3. Biochim Biophys Acta 1444: 384–394, 1999Google Scholar
  80. 80.
    Kunz M, Moeller S, Koczan D, Lorenz P, Wenger RH, Glocker MO, Thiesen HJ, Gross G, Ibrahim SM: Mechanisms of hypoxic gene regulation of angiogenesis factor Cyr61 in melanoma cells. J Biol Chem 278: 45651–45660, 2003Google Scholar
  81. 81.
    Quax PH, van Muijen GN, Weening-Verhoeff EJ, Lund LR, Dano K, Ruiter DJ, Verheijen JH: Metastatic behavior of human melanoma cell lines in nude mice correlates with urokinase-type plasminogen activator, its type-1 inhibitor, and urokinase-mediated matrix degradation. J Cell Biol 115: 191–199, 1991Google Scholar
  82. 82.
    de Vries TJ, Verheijen JH, de Bart AC, Weidle UH, Ruiter DJ, van Muijen GN: Decreased expression of both the low-density lipoprotein receptor-related protein/alpha(2)-macroglobulin receptor and its receptor-associated protein in late stages of cutaneous melanocytic tumor progression. Cancer Res 56: 1432–1439, 1996Google Scholar
  83. 83.
    van Groningen JJ, Klink SL, Bloemers HP, Swart GW: Expression of tissue-type transglutaminase correlates positively with metastatic properties of human melanoma cell lines. Int J Cancer 60: 383–387, 1995Google Scholar
  84. 84.
    Weterman MA, van Muijen GN, Ruiter DJ, Bloemers HP: Thymosin beta-10 expression in melanoma cell lines and melanocytic lesions: a new progression marker for human cutaneous melanoma. Int J Cancer 53: 278–284, 1993Google Scholar
  85. 85.
    Kunz M, Hartmann A, Flory E, Toksoy A, Koczan D, Thiesen HJ, Mukaida N, Neumann M, Rapp UR, Brocker EB, Gillitzer R: Anoxia-induced up-regulation of interleukin-8 in human malignant melanoma A potential mechanism for high tumor aggressiveness. Am J Pathol 155: 753–763, 1999Google Scholar
  86. 86.
    Kurschat P, Zigrino P, Nischt R, Breitkopf K, Steurer P, Klein CE, Krieg T, Mauch C: Tissue inhibitor of matrix metalloproteinase-2 regulates matrix metalloproteinase-2 activation by modulation of membrane-type 1 matrix metalloproteinase activity in high and low invasive melanoma cell lines. J Biol Chem 274: 21056–21062, 1999Google Scholar
  87. 87.
    Hofmann UB, Westphal JR, Waas ET, Zendman AJ, Cornelissen IM, Ruiter DJ, van Muijen GN: Matrix metalloproteinases in human melanoma cell lines and xenografts: increased expression of activated matrix metalloproteinase-2 (MMP-2) correlates with melanoma progression. Br J Cancer 81: 774–782, 1999Google Scholar
  88. 88.
    Zendman AJ, Cornelissen IM, Weidle UH, Ruiter DJ, van Muijen GN: CTp11, a novel member of the family of human cancer/testis antigens. Cancer Res 59: 6223–6229, 1999Google Scholar
  89. 89.
    Danen EH, van Muijen GN, van de Wiel-van Kemenade E, Jansen KF, Ruiter DJ, Figdor CG: Regulation of integrin-mediated adhesion to laminin and collagen in human melanocytes and in non-metastatic and highly metastatic human melanoma cells. Int J Cancer 54: 315–321, 1993Google Scholar
  90. 90.
    Manten-Horst E, Danen EH, Smit L, Snoek M, Le Poole IC, Van Muijen GN, Pals ST, Ruiter DJ: Expression of CD44 splice variants in human cutaneous melanoma and melanoma cell lines is related to tumor progression and metastatic potential. Int J Cancer 64: 182–188, 1995Google Scholar
  91. 91.
    Robledo MM, Bartolome RA, Longo N, Rodriguez-Frade JM, Mellado M, Longo I, van Muijen GN, Sanchez-Mateos P, Teixido J: Expression of functional chemokine receptors CXCR3 and CXCR4 on human melanoma cells. J Biol Chem 276: 45098–45105, 2001Google Scholar
  92. 92.
    Degen WG, Weterman MA, van Groningen JJ, Cornelissen IM, Lemmers JP, Agterbos MA, Geurts van Kessel A, Swart GW, Bloemers HP: Expression of nma, a novel gene, inversely correlates with the metastatic potential of human melanoma cell lines and xenografts. Int J Cancer 65: 460–465, 1996Google Scholar
  93. 93.
    Weterman MA, Ajubi N, van Dinter IM, Degen WG, van Muijen GN, Ruitter DJ, Bloemers HP: Nmb, a novel gene, is expressed in low-metastatic human melanoma cell lines and xenografts. Int J Cancer 60: 73–81, 1995Google Scholar
  94. 94.
    van Groningen JJ, Egmond MR, Bloemers HP, Swart GW: Nmd, a novel gene differentially expressed in human melanoma cell lines, encodes a new atypical member of the enzyme family of lipases. FEBS Lett 404: 82–86, 1997Google Scholar
  95. 95.
    Zendman AJ, Cornelissen IM, Weidle UH, Ruiter DJ, van Muijen GN: TM7XN1, a novel human EGF-TM7-like cDNA, detected with mRNA differential display using human melanoma cell lines with different metastatic potential. FEBS Lett 446: 292–298, 1999Google Scholar
  96. 96.
    Danen EH, Jansen KF, Van Kraats AA, Cornelissen IM, Ruiter DJ, Van Muijen GN: Alpha v-integrins in human melanoma: Gain of alpha v beta 3 and loss of alpha v beta 5 are related to tumor progression in situ but not to metastatic capacity of cell lines in nude mice. Int J Cancer 61: 491–496, 1995Google Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • Guido W. M. Swart
    • 1
  • Pim C. Lunter
    • 1
  • Jeroen W. J. van Kilsdonk
    • 1
  • Leon C. L. T. van Kempen
    • 1
    • 2
  1. 1.Department of Biochemistry, Science FacultyRadboud University NijmegenNijmegenNetherlands
  2. 2.Department of PathologyUMC St. RadboudNijmegenNetherlands

Personalised recommendations