Advertisement

Left ventricular mechanical dyssynchrony assessment in obese patients using the cadmium-zinc telluride SPECT camera

  • Han Zhang
  • Xin Fan
  • Shanshan Qin
  • Jiajia Zhang
  • Yuzhen Yin
  • Mengdie Yang
  • Fei YuEmail author
Original Paper

Abstract

The use of phase analysis techniques to assess left ventricular mechanical dyssynchrony (LVMD) has been well documented. However, artifacts have reduced the accuracy of the assessment due to soft tissue attenuation, so little information is available about the effects of obesity on LVMD. The aim of this study was to evaluate LVMD in patients with simple obesity by SPECT with a new cadmium-zinc telluride (CZT) detector and to explore the effects of obesity on left ventricular wall motion. We retrospectively analyzed 95 patients with myocardial perfusion imaging (MPI) images without perfusion defects, of which 55 were diagnosed with simple obesity (BMI > 30), and 40 non-obese patients (BMI < 25) matched for age and sex were used as controls. The five-point method was used to analyze the MPI images of the two groups, and the complete cardiac function parameters including phase bandwidth (PBW) and phase standard deviation (PSD) were obtained. Although the PBW values of the two groups were within the normal range (cut-off value > 90°), the PBW (35.4 ± 28 vs 24.9 ± 7.5, P < .001; 36.6 ± 18.4 vs 28.7 ± 9.1, P = 0.01) and PSD (8.7 ± 7.6 vs 5.9 ± 2, P = 0.02; 9.2 ± 4.9 vs 7.1 ± 2.7, P = 0.01) of the obese group were larger than the control group under both stressing and resting, and the difference was statistically significant. CZT-SPECT can effectively assess LVMD in obese patients, and they are more likely to develop LVMD, which may be related to their left ventricular volume.

Keywords

Left ventricular mechanical dyssynchrony Phase analysis Phase standard deviation Phase bandwidth 

Abbreviations

LVMD

Left ventricular mechanical dyssynchrony

CVD

Cardiovascular diseases

CAD

Coronary artery disease

MPI

Myocardial perfusion imaging

CZT

Cadmium-zinc-telluride

PBW

Phase bandwidth

PSD

Phase standard deviation

LVEF

Left ventricular ejction fraction

ESV

End systolic volume

EDV

End diastolic volume

CAG

Coronary angiography

Notes

Funding

Funding was provided by The National Key Research and Development Program Of China (Grant No. 2016YFC0104303).

Compliance with ethical standards

Conflict of interest

There is no potential conflict of interest to disclose.

References

  1. 1.
    Li Y, Wang DD, Ley SH, Howard AG, He Y, Lu Y, Danaei G, Hu FB (2016) Potential impact of time trend of life-style factors on cardiovascular disease Burden in China. J Am Coll Cardiol 68(8):818–833CrossRefGoogle Scholar
  2. 2.
    Celler A, Farncombe T, Bever C, Noll D, Maeght J, Harrop R, Lyster D (2000) Performance of the dynamic single photon emission computed tomography (dSPECT) method for decreasing or increasing activity changes. Phys Med Biol 45(12):3525–3543CrossRefGoogle Scholar
  3. 3.
    Ben-Haim S, Almukhailed O, Neill J, Slomka P, Allie R, Shiti D, Berman DS, Bomanji J (2014) Clinical value of supine and upright myocardial perfusion imaging in obese patients using the D-SPECT camera. J Nucl Cardiol 21(3):478–485CrossRefGoogle Scholar
  4. 4.
    Hess PL, Shaw LK, Fudim M, Iskandrian AE, Borges-Neto S (2017) The prognostic value of mechanical left ventricular dyssynchrony defined by phase analysis from gated single-photon emission computed tomography myocardial perfusion imaging among patients with coronary heart disease. J Nucl Cardiol 24(2):482–490CrossRefGoogle Scholar
  5. 5.
    Chen J, Garcia EV, Bax JJ, Iskandrian AE, Borges-Neto S, Soman P (2011) SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony. J Nucl Cardiol 18(4):685–694CrossRefGoogle Scholar
  6. 6.
    Cho SG, Jabin Z, Park KS, Kim J, Kang SR, Kwon SY, Jeong GC, Song M, Kim JS, Cho JY, Kim HK, Song HC, Min JJ, Bom HS (2017) Clinical values of left ventricular mechanical dyssynchrony assessment by gated myocardial perfusion SPECT in patients with acute myocardial infarction and multivessel disease. Eur J Nucl Med Mol Imaging 44(2):259–266CrossRefGoogle Scholar
  7. 7.
    Allie R, Hutton BF, Prvulovich E, Bomanji J, Michopoulou S, Ben-Haim S (2016) Pitfalls and artifacts using the D-SPECT dedicated cardiac camera. J Nucl Cardiol 23(2):301–310CrossRefGoogle Scholar
  8. 8.
    Blaire T, Bailliez A, Ben Bouallegue F, Bellevre D, Agostini D, Manrique A (2018) First assessment of simultaneous dual isotope (I/Tc) cardiac SPECT on two different CZT cameras: A phantom study. J Nucl Cardiol 25(5):1692–1704CrossRefGoogle Scholar
  9. 9.
    Oldan JD, Shaw LK, Hofmann P, Phelan M, Nelson J, Pagnanelli R, Borges-Neto S (2016) Prognostic value of the cadmium-zinc-telluride camera: A comparison with a conventional (Anger) camera. J Nucl Cardiol 23(6):1280–1287CrossRefGoogle Scholar
  10. 10.
    Lavie CJ, De Schutter A, Parto P, Jahangir E, Kokkinos P, Ortega FB, Arena R, Milani RV (2016) Obesity and prevalence of cardiovascular diseases and prognosis-the obesity paradox updated. Prog Cardiovasc Dis 58(5):537–547CrossRefGoogle Scholar
  11. 11.
    Elagizi A, Kachur S, Lavie CJ, Carbone S, Pandey A, Ortega FB, Milani RV (2018) An overview and update on obesity and the obesity paradox in cardiovascular diseases. Prog Cardiovasc Dis 61(2):142–150CrossRefGoogle Scholar
  12. 12.
    Kim C, Kwok YS, Heagerty P, Redberg R (2001) Pharmacologic stress testing for coronary disease diagnosis: a meta-analysis. Am Heart J 142(6):934–944CrossRefGoogle Scholar
  13. 13.
    Wackers FJ (2002) Should SPET attenuation correction be more widely employed in routine clinical practice? Against. Eur J Nucl Med Mol Imaging 29(3):412–415CrossRefGoogle Scholar
  14. 14.
    Kita A, Onoguchi M, Shibutani T, Sugimoto K, Kosaka N, Adachi T, Kimura H (2019) Influence of myocardial count on phase dyssynchrony analysis of gated myocardial perfusion single-photon emission computed tomography. Nucl Med Commun 40(2):124–130CrossRefGoogle Scholar
  15. 15.
    Global BMI Mortality Collaboration, Di Angelantonio E, Bhupathiraju ShN, Wormser D, Gao P, Kaptoge S, Berrington de Gonzalez A, Cairns BJ, Huxley R, Jackson ChL, Joshy G, Lewington S, Manson JE, Murphy N, Patel AV, Samet JM, Woodward M, Zheng W, Zhou M, Bansal N, Barricarte A, Carter B, Cerhan JR, Smith GD, Fang X et al (2016) Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet (London, England) 388(10046):776–786CrossRefGoogle Scholar
  16. 16.
    Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, Abraham JP, Abu-Rmeileh NM, Achoki T, AlBuhairan FS, Alemu ZA, Alfonso R, Ali MK, Ali R, Guzman NA, Ammar W, Anwari P, Banerjee A, Barquera S, Basu S, Bennett DA et al (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England) 384(9945):766–781CrossRefGoogle Scholar
  17. 17.
    Lu Y, Hajifathalian K, Ezzati M, Woodward M, Rimm EB, Danaei G (2014) Metabolic mediators of the effects of body-mass index, overweight, and obesity on coronary heart disease and stroke: a pooled analysis of 97 prospective cohorts with 1·8 million participants. Lancet (London, England) 383(9921):970–983CrossRefGoogle Scholar
  18. 18.
    Bibbins-Domingo K, Coxson P, Pletcher MJ, Lightwood J, Goldman L (2007) Adolescent overweight and future adult coronary heart disease. N Engl J Med 357(23):2371–2379CrossRefGoogle Scholar
  19. 19.
    Twig G, Yaniv G, Levine H, Leiba A, Goldberger N, Derazne E, Ben-Ami Shor D, Tzur D, Afek A, Shamiss A, Haklai Z, Kark JD (2016) Body-Mass Index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med 374(25):2430–2440CrossRefGoogle Scholar
  20. 20.
    Goldberg AS, Alraies MC, Cerqueira MD, Jaber WA, Aljaroudi WA (2014) Prognostic value of left ventricular mechanical dyssynchrony by phase analysis in patients with non-ischemic cardiomyopathy with ejection fraction 35–50% and QRS %3c 150 ms. J Nucl Cardiol 21(1):57–66CrossRefGoogle Scholar
  21. 21.
    Malik D, Mittal B, Sood A, Parmar M, Kaur G, Bahl A (2019) Left ventricular mechanical dyssynchrony assessment in long-standing type II diabetes mellitus patients with normal gated SPECT-MPI. J Nucl Cardiol 26(5):1650–1658CrossRefGoogle Scholar
  22. 22.
    Ozdemir S, Kırılmaz B, Barutçu A, Tan YZ, Çelik F, Akgoz S (2015) The evaluation of left ventricular dyssynchronization in patients with hypertension by phase analysis of myocardial perfusion-gated SPECT. Ann Nucl Med 29(3):240–247CrossRefGoogle Scholar
  23. 23.
    Nakazato R, Slomka PJ, Fish M, Schwartz RG, Hayes SW, Thomson LE, Friedman JD, Lemley M, Mackin ML, Peterson B, Schwartz AM, Doran JA, Germano G, Berman DS (2015) Quantitative high-efficiency cadmium-zinc-telluride SPECT with dedicated parallel-hole collimation system in obese patients: results of a multi-center study. J Nucl Cardiol 22(2):266–275CrossRefGoogle Scholar
  24. 24.
    Gimelli A, Bottai M, Giorgetti A, Genovesi D, Filidei E, Marzullo P (2012) Evaluation of ischaemia in obese patients: feasibility and accuracy of a low-dose protocol with a cadmium-zinc telluride camera. Eur J Nucl Med Mol Imaging 39(8):1254–1261CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2020

Authors and Affiliations

  • Han Zhang
    • 1
  • Xin Fan
    • 1
  • Shanshan Qin
    • 1
  • Jiajia Zhang
    • 1
  • Yuzhen Yin
    • 1
  • Mengdie Yang
    • 1
  • Fei Yu
    • 1
    Email author
  1. 1.Department of Nuclear MedicineShanghai Tenth People’s Hospital of Tongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations