The International Journal of Cardiovascular Imaging

, Volume 35, Issue 9, pp 1563–1572 | Cite as

Simultaneous evaluation of plaque stability and ischemic potential of coronary lesions in a fluid–structure interaction analysis

  • Xinlei Wu
  • Clemens von Birgelen
  • Su Zhang
  • Daixin Ding
  • Jiayue Huang
  • Shengxian TuEmail author
Original Paper


The measurement of fractional flow reserve (FFR) and superficial wall stress (SWS) identifies inducible myocardial ischemia and plaque vulnerability, respectively. A simultaneous evaluation of both FFR and SWS is still lacking, while it may have a major impact on therapy. A new computational model of one-way fluid–structure interaction (FSI) was implemented and used to perform a total of 54 analyses in virtual coronary lesion models, based on plaque compositions, arterial remodeling patterns, and stenosis morphologies under physiological conditions. Due to a greater lumen dilation and more induced strain, FFR in the lipid-rich lesions (0.81 ± 0.15) was higher than that in fibrous lesions (0.79 ± 0.16, P = 0.001) and calcified lesions (0.79 ± 0.16, P = 0.001). Four types of lesions were further defined, based on the combination of cutoff values for FFR (0.80) and maximum relative SWS (30 kPa): The level of risk increased from (1) plaques with mild-to-moderate stenosis but negative remodeling for lipid-rich (Type A: non-ischemic, stable) to (2) lipid-rich plaques with mild-to-moderate stenosis and without-to-positive remodeling (Type B: non-ischemic, unstable) or plaques with severe stenosis but negative remodeling for lipid-rich (Type C: ischemic, stable) to (3) lipid-rich plaques with severe stenosis and without-to-positive remodeling (Type D: ischemic, unstable). The analysis of FSI to simultaneously evaluate inducible myocardial ischemia and plaque stability may be useful to identify coronary lesions at a high risk and to ultimately optimize treatment. Further research is warranted to assess whether a more aggressive treatment may improve the prognosis of patients with non-ischemic, intermediate, and unstable lesions.


Plaque stability Myocardial ischemia Fractional flow reserve Fluid–structure interaction Cardiovascular biomechanics 



Computational fluid dynamics


Percent diameter stenosis


Finite element analysis


Fractional flow reserve


Fluid–structure interaction


Minimum lumen diameter


Relative superficial wall stress



This study was funded by the National Natural Science Foundation of China (Grant No. 81871460), Program of Shanghai Technology Research Leader, and research programs from Shanghai Jiao Tong University (YG2016ZD09 and YG2015ZD04).

Compliance with ethical standards

Conflict of interest

ST has received a research grant from Medis medical imaging and Pulse medical imaging technology. CvB indicated institutional research grants to the research department of TC Twente by Abbott Vascular, Boston Scientific, Biotronik and Medtronic (not related to the present study). XW declares that he has no conflict of interest. SZ declares that she has no conflict of interest. DX declares that she has no conflict of interest. JH declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

10554_2019_1611_MOESM1_ESM.avi (5.5 mb)
Supplementary material 1 Video 1: Dynamic relative superficial wall stress of fluid-structure interaction analysis of 10 mm-long lipid-rich plaques with 50% diameter stenosis and without arterial remodeling (AVI 5668 kb)
10554_2019_1611_MOESM2_ESM.avi (371 kb)
Supplementary material 2 Video 2: Blood flow velocity of fluid-structure interaction analysis of 10 mm-long lipid-rich plaques with 50% diameter stenosis and without arterial remodeling (AVI 371 kb)


  1. 1.
    Taylor CA, Fonte TA, Min JK (2013) Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol 61(22):2233–2241CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Van De Hoef TP, Meuwissen M, Escaned J, Davies JE, Siebes M, Spaan JAE, Piek JJ (2013) Fractional flow reserve as a surrogate for inducible myocardial ischaemia. Nat Rev Cardiol 7(8):439–452CrossRefGoogle Scholar
  3. 3.
    Pijls NHJ, Tanaka N, Fearon WF (2013) Functional assessment of coronary stenoses: can we live without it? Eur Heart J 34(18):1335–1344CrossRefPubMedGoogle Scholar
  4. 4.
    Itu L, Rapaka S, Passerini T, Georgescu B, Schwemmer C, Schoebinger M, Flohr T, Sharma P, Comaniciu D (2016) A machine-learning approach for computation of fractional flow reserve from coronary computed tomography. J Appl Physiol 121(1):42–52CrossRefPubMedGoogle Scholar
  5. 5.
    Tu S, Barbato E, Köszegi Z, Yang J, Sun Z, Holm NR, Tar B, Li Y, Rusinaru D, Wijns W, Reiber JHC (2014) Fractional flow reserve calculation from 3-dimensional quantitative coronary angiography and TIMI frame count. JACC Cardiovasc Interv 7(7):768–777CrossRefPubMedGoogle Scholar
  6. 6.
    Wu X, von Birgelen C, Li Z, Zhang S, Huang J, Liang F, Li Y, Wijns W, Tu S (2018) Assessment of superficial coronary vessel wall deformation and stress: validation of in silico models and human coronary arteries in vivo. Int J Cardiovasc Imaging 34(2):1–13Google Scholar
  7. 7.
    Kwak BR, Baeck M, Bochaton-Piallat M-L, Caligiuri G, Daemens MJAP, Davies PF, Hoefer IE, Holvoet P, Jo H, Krams R, Lehoux S, Monaco C, Steffens S, Virmani R, Weber C, Wentzel JJ, Evans PC (2014) Biomechanical factors in atherosclerosis: mechanisms and clinical implications. Eur Heart J 35(43):3013–3020CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Ohayon J, Finet G, Le Floc’h S, Cloutier G, Gharib AM, Heroux J, Pettigrew RI (2014) Biomechanics of atherosclerotic coronary plaque: site, stability and in vivo elasticity modeling. Ann Biomed Eng 42(2):269–279CrossRefPubMedGoogle Scholar
  9. 9.
    Brown AJ, Teng Z, Calvert PA, Rajani NK, Hennessy O, Nerlekar N, Obaid DR, Costopoulos C, Huang Y, Hoole SP, Goddard M, West NEJ, Gillard JH, Bennett MR (2016) Plaque structural stress estimations improve prediction of future major adverse cardiovascular events after intracoronary imaging. Circ Cardiovasc Imaging 9(6):e004172CrossRefPubMedGoogle Scholar
  10. 10.
    Holzapfela GA, Mulvihillb JJ, Cunnaneb EM, Walshb MT (2014) Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J Biomech 47(4):859–869CrossRefGoogle Scholar
  11. 11.
    Akyildiz AC, Speelman L, Gijsen FJH (2014) Mechanical properties of human atherosclerotic intima tissue. J Biomech 47(4):773–783CrossRefPubMedGoogle Scholar
  12. 12.
    Thondapu V, Bourantas CV, Foin N, Jang I-K, Serruys PW, Barlis P (2016) Biomechanical stress in coronary atherosclerosis: emerging insights from computational modelling. Eur Heart J 38(2):81–92Google Scholar
  13. 13.
    Wu X, von Birgelen C, Muramatsu T, Li Y, Holm NR, Reiber JHC, Tu S (2017) A novel four-dimensional angiographic approach to assess dynamic superficial wall stress of coronary arteries in vivo: initial experience in evaluating vessel sites with subsequent plaque rupture. EuroIntervention 13(9):1099–1103CrossRefGoogle Scholar
  14. 14.
    Kock SA, Nygaard JV, Eldrup N, Fründ E-T, Klærke A, Paaske WP, Falk E, Kim WY (2008) Mechanical stresses in carotid plaques using MRI-based fluid-structure interaction models. J Biomech 41(8):1651–1658CrossRefPubMedGoogle Scholar
  15. 15.
    Teng Zhongzhao, Canton Gador, Yuan Chun, Ferguson Marina, Yang Chun, Huang Xueying, Zheng Jie, Woodard Pamela K, Tang Dalin (2010) 3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: an in vivo MRI-based 3D FSI study. J Biomech Eng-Trans ASME 132(3):031007CrossRefGoogle Scholar
  16. 16.
    Tang D, Yang C, Kobayashi S, Zheng J, Woodard PK, Teng Z, Billiar K, Bach R, Ku DN (2009) 3D MRI-based anisotropic FSI models with cyclic bending for human coronary atherosclerotic plaque mechanical analysis. J Biomech Eng-Trans ASME 131(6):061010CrossRefGoogle Scholar
  17. 17.
    Marques KMJ, Spruijt HJ, Boer C, Westerhof N, Visser CA, Visser FC (2002) The diastolic flow-pressure gradient relation in coronary stenoses in humans. J Am Coll Cardiol 39(10):1630–1636CrossRefPubMedGoogle Scholar
  18. 18.
    Ohayon J, Dubreuil O, Tracqui P, Le Floc’h S, Rioufol G, Chalabreysse L, Thivolet F, Pettigrew RI, Finet G (2007) Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. A J Physiol-Heart Circ Physiol 293(3):H1987–H1996CrossRefGoogle Scholar
  19. 19.
    Wolf K, Bayrasy P, Brodbeck C, Kalmykov I, Oeckerath A, Wirth N (2017) MpCCI neutral interfaces for multiphysics simulations. Springer, New YorkCrossRefGoogle Scholar
  20. 20.
    Young DF, Cholvin NR, Kirkeeide RL, Roth AC (1977) Hemodynamics of arterial stenoses at elevated flow rates. Circ Res 41(1):99–107CrossRefPubMedGoogle Scholar
  21. 21.
    Costopoulos C, Huang Y, Brown AJ, Calvert PA, Hoole SP, West NEJ, Gillard JH, Teng Z, Bennett MR (2017) Plaque rupture in coronary atherosclerosis is associated with increased plaque structural stress. JACC Cardiovasc Imaging 10:1472CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Chu M, von Birgelen C, Li Y, Westra J, Yang J, Holm NR, Reiber JHC, Wijns W, Tu S (2018) Quantification of disturbed coronary flow by disturbed vorticity index and relation with fractional flow reserve. Atherosclerosis 273:136–144CrossRefPubMedGoogle Scholar
  23. 23.
    Stroud JS, Berger SA, Saloner D (2000) Influence of stenosis morphology on flow through severely stenotic vessels: implications for plaque rupture. J Biomech 33(4):443–455CrossRefPubMedGoogle Scholar
  24. 24.
    Pijls NHJ, Sels J-W (2012) Functional measurement of coronary stenosis. J Am Coll Cardiol 59(12):1045–1057CrossRefPubMedGoogle Scholar
  25. 25.
    Tonino PAL, De Bruyne B, Pijls NHJ, Siebert U, Ikeno F, vant Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, Maccarthy PA, Fearon WF (2009) Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 360(3):213–224CrossRefPubMedGoogle Scholar
  26. 26.
    De Bruyne B, Pijls NHJ, Kalesan B, Barbato E, Tonino PAL, Piroth Z, Jagic N, Möbius-Winkler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engström T, Oldroyd KG, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Jüni P, Fearon WF (2012) Fractional flow reserve–guided PCI versus medical therapy in stable coronary disease. N Engl J Med 367(11):991–1001CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mosher P, Ross J, Mcfate PA, Shaw RF (1964) Control of coronary blood flow by an autoregulatory mechanism. Circ Res 14(3):250–259CrossRefPubMedGoogle Scholar
  28. 28.
    Hoffman JIE (2000) Problems of coronary flow reserve. Ann Biomed Eng 28(8):884–896CrossRefPubMedGoogle Scholar
  29. 29.
    Choi G, Lee JM, Kim HJ, Park JB, Sankaran S, Otake H, Doh JH, Nam CW, Shin ES, Taylor CA (2015) Coronary artery axial plaque stress and its relationship with lesion geometry: application of computational fluid dynamics to coronary CT angiography. JACC Cardiovasc Imaging 8(10):1156–1166CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Biomedical Instrument Institute, School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Shanghai Med-X Engineering Research CenterShanghai Jiao Tong UniversityShanghaiChina
  3. 3.Thoraxcentrum Twente, Medisch Spectrum TwenteEnschedeThe Netherlands

Personalised recommendations