Advertisement

Two-dimensional speckle tracking echocardiography assessed right ventricular function and exercise capacity in pre-capillary pulmonary hypertension

  • Bing-Yang Liu
  • Wei-Chun Wu
  • Qi-Xian Zeng
  • Zhi-Hong Liu
  • Li-Li Niu
  • Yue Tian
  • Xiao-Ling Cheng
  • Qin Luo
  • Zhi-Hui Zhao
  • Li Huang
  • Hao Wang
  • Jian-Guo He
  • Chang-Ming XiongEmail author
Original Paper

Abstract

Resting two-dimensional speckle tracking echocardiography (2D-STE) identified right ventricular (RV) systolic function were reported to predict exercise capacity in pulmonary hypertension (PH) patients, but little attention had been payed to 2D-STE detected RV diastolic function. Therefore, we aim to elucidate and compare the relations between 2D-STE identified RV diastolic/systolic functions and peak oxygen consumption (PVO2) determined by cardiopulmonary exercise testing (CPET) in pre-capillary PH. 2D-STE was performed in 66 pre-capillary PH patients and 28 healthy controls. Linear correlation and multivariate regression analyses were performed to evaluate and compare the relations between RV 2D-STE parameters and PVO2. Receiver operating characteristic curves were used to compare the predictive value of 2D-STE parameters in predicting the cut-off—PVO2 < 11 ml/min/kg. There were significant differences of all the 2D-STE parameters between PH patients and healthy controls. In patients, RV-peak global longitudinal strain (GLS, rs = − 0.498, P < 0.001), RV- peak systolic strain rate (GSRs, rs = − 0.537, P < 0.001) and RV- peak early diastolic strain rate (GSRe, rs = 0.527, P < 0.001) significantly correlated with PVO2, but no significant correlation was observed between RV- peak late diastolic strain rate (GSRa, rs = 0.208, P = 0.093) and PVO2. The first multivariate regression analysis of clinical data without echocardiographic parameters identified WHO functional class, NT-proBNP and BMI as independent predictors of PVO2 (Model-1, adjusted r2 = 0.421, P < 0.001); Then we added conventional echocardiographic parameters and 2D-STE parameters to the clinical data, identified S,(Model-2,adjusted r2 = 0.502, P < 0.001), RV-GLS (Model-3, adjusted r2 = 0.491, P < 0.001), RV-GSRe (Model-4, adjusted r2 = 0.500, P < 0.001) and RV-GSRs (Model-5, adjusted r2 = 0.519, P < 0.001) as independent predictors of PVO2, respectively. The predictive power was increased, and Model-5 including RV-GSRs showed the highest predictive capability. ROC curves found RV-GSRs expressed the strongest predictive value (AUC = 0.88, P < 0.001), and RV-GSRs > − 0.65/s had a 88.2% sensibility and 82.2% specificity to predict PVO2 < 11 ml/min/kg. 2D-STE assessed RV function improves the prediction of exercise capacity represented by PVO2 in pre-capillary PH.

Graphical abstract

Keywords

Pulmonary hypertension 2-dimensional speckle tracking echocardiography Strain Strain rate Cardiopulmonary exercise test Peak oxygen consumption Right ventricular function 

Notes

Author contributions

All the authors take responsibility for all aspects of the reliability and freedom from bias of the data presented and their discussed interpretation.

Funding

The present study was supported by the grant of Capital Health Development and Scientific Research Projects (Grant No. 2016–2-4036) and CAMS Initiative for Innovative Medical (Grant No. 2016-I2 M-3-006).

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

The present study was approved by the Ethics Committee of Fuwai Hospital (No. 2018-1063). All procedures performed in our study involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments.

Informed consent

Written informed consent was obtained from all participants in this study.

References

  1. 1.
    Galie N, Humbert M, Vachiery JL et al (2015) 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 46(4):903–975.  https://doi.org/10.1183/13993003.01032-2015 Google Scholar
  2. 2.
    D’Alonzo GE, Barst RJ, Ayres SM et al (1991) Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med 115(5):343–349Google Scholar
  3. 3.
    Humbert M, Sitbon O, Chaouat A et al (2010) Survival in patients with idiopathic, familial, and anorexigen-associated pulmonary arterial hypertension in the modern management era. Circulation 122(2):156–163.  https://doi.org/10.1161/CIRCULATIONAHA.109.911818 Google Scholar
  4. 4.
    Benza RL, Miller DP, Gomberg-Maitland M et al (2010) Predicting survival in pulmonary arterial hypertension: insights from the Registry to Evaluate Early and Long-Term Pulmonary Arterial Hypertension Disease Management (REVEAL). Circulation 122(2):164–172.  https://doi.org/10.1161/CIRCULATIONAHA.109.898122 Google Scholar
  5. 5.
    Arena R, Lavie CJ, Milani RV et al (2010) Cardiopulmonary exercise testing in patients with pulmonary arterial hypertension: an evidence-based review. J Heart Lung Transplant 29(2):159–173.  https://doi.org/10.1016/j.healun.2009.09.003 Google Scholar
  6. 6.
    Wensel R, Opitz CF, Anker SD et al (2002) Assessment of survival in patients with primary pulmonary hypertension: importance of cardiopulmonary exercise testing. Circulation 106(3):319–324Google Scholar
  7. 7.
    Piepoli MF, Corra U, Agostoni PG et al (2006) Statement on cardiopulmonary exercise testing in chronic heart failure due to left ventricular dysfunction: recommendations for performance and interpretation Part II: How to perform cardiopulmonary exercise testing in chronic heart failure. Eur J Cardiovasc Prev Rehabil 13(3):300–311Google Scholar
  8. 8.
    Rehman MB, Garcia R, Christiaens L et al (2018) Power of resting echocardiographic measurements to classify pulmonary hypertension patients according to European society of cardiology exercise testing risk stratification cut-offs. Int J Cardiol 257:291–297.  https://doi.org/10.1016/j.ijcard.2018.01.042 Google Scholar
  9. 9.
    Hardegree EL, Sachdev A, Villarraga HR et al (2013) Role of serial quantitative assessment of right ventricular function by strain in pulmonary arterial hypertension. Am J Cardiol 111(1):143–148.  https://doi.org/10.1016/j.amjcard.2012.08.061 Google Scholar
  10. 10.
    Li Y, Xie M, Wang X et al (2013) Right ventricular regional and global systolic function is diminished in patients with pulmonary arterial hypertension: a 2-dimensional ultrasound speckle tracking echocardiography study. Int J Cardiovasc Imaging 29(3):545–551.  https://doi.org/10.1007/s10554-012-0114-5 Google Scholar
  11. 11.
    Calcutteea A, Lindqvist P, Soderberg S et al (2014) Global and regional right ventricular dysfunction in pulmonary hypertension. Echocardiography 31(2):164–171.  https://doi.org/10.1111/echo.12309 Google Scholar
  12. 12.
    Sunbul M, Kepez A, Kivrak T et al (2014) Right ventricular longitudinal deformation parameters and exercise capacity: prognosis of patients with chronic thromboembolic pulmonary hypertension. HERZ 39(4):470–475.  https://doi.org/10.1007/s00059-013-3842-y Google Scholar
  13. 13.
    Naderi N, Ojaghi HZ, Amin A et al (2013) Utility of right ventricular strain imaging in predicting pulmonary vascular resistance in patients with pulmonary hypertension. Congest Heart Fail 19(3):116–122.  https://doi.org/10.1111/chf.12009 Google Scholar
  14. 14.
    Sachdev A, Villarraga HR, Frantz RP et al (2011) Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest 139(6):1299–1309.  https://doi.org/10.1378/chest.10-2015 Google Scholar
  15. 15.
    Utsunomiya H, Nakatani S, Okada T et al (2011) A simple method to predict impaired right ventricular performance and disease severity in chronic pulmonary hypertension using strain rate imaging. Int J Cardiol 147(1):88–94.  https://doi.org/10.1016/j.ijcard.2009.08.009 Google Scholar
  16. 16.
    Sutherland GR, Di Salvo G, Claus P et al (2004) Strain and strain rate imaging: a new clinical approach to quantifying regional myocardial function. J Am Soc Echocardiogr 17(7):788–802.  https://doi.org/10.1016/j.echo.2004.03.027 Google Scholar
  17. 17.
    Kittipovanonth M, Bellavia D, Chandrasekaran K et al (2008) Doppler myocardial imaging for early detection of right ventricular dysfunction in patients with pulmonary hypertension. J Am Soc Echocardiogr 21(9):1035–1041.  https://doi.org/10.1016/j.echo.2008.07.002 Google Scholar
  18. 18.
    Shiina Y, Funabashi N, Lee K et al (2009) Right atrium contractility and right ventricular diastolic function assessed by pulsed tissue Doppler imaging can predict brain natriuretic peptide in adults with acquired pulmonary hypertension. Int J Cardiol 135(1):53–59.  https://doi.org/10.1016/j.ijcard.2008.03.090 Google Scholar
  19. 19.
    Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr 23(7):685–713.  https://doi.org/10.1016/j.echo.2010.05.010 (786–788) Google Scholar
  20. 20.
    Li AL, Zhai ZG, Zhai YN et al (2018) The value of speckle-tracking echocardiography in identifying right heart dysfunction in patients with chronic thromboembolic pulmonary hypertension. Int J Cardiovasc Imaging 34(12):1895–1904.  https://doi.org/10.1007/s10554-018-1423-0 Google Scholar
  21. 21.
    Filusch A, Mereles D, Gruenig E et al (2010) Strain and strain rate echocardiography for evaluation of right ventricular dysfunction in patients with idiopathic pulmonary arterial hypertension. Clin Res Cardiol 99(8):491–498.  https://doi.org/10.1007/s00392-010-0147-5 Google Scholar
  22. 22.
    Rain S, Handoko ML, Trip P et al (2013) Right ventricular diastolic impairment in patients with pulmonary arterial hypertension. Circulation 128(18):2016–2025.  https://doi.org/10.1161/circulationaha.113.001873 (1–10) Google Scholar
  23. 23.
    Trip P, Rain S, Handoko ML et al (2015) Clinical relevance of right ventricular diastolic stiffness in pulmonary hypertension. Eur Respir J 45(6):1603–1612.  https://doi.org/10.1183/09031936.00156714 Google Scholar
  24. 24.
    Shukla M, Park JH, Thomas JD et al (2018) Prognostic value of right ventricular strain using speckle-tracking echocardiography in pulmonary hypertension: a systematic review and meta-analysis. Can J Cardiol 34(8):1069–1078.  https://doi.org/10.1016/j.cjca.2018.04.016 Google Scholar
  25. 25.
    Li Y, Wang Y, Meng X et al (2017) Assessment of right ventricular longitudinal strain by 2D speckle tracking imaging compared with RV function and hemodynamics in pulmonary hypertension. Int J Cardiovasc Imaging 33(11):1737–1748.  https://doi.org/10.1007/s10554-017-1182-3 Google Scholar
  26. 26.
    Werther EA, Ingvarsson A, Smith JG et al (2019) Echocardiographic right ventricular strain from multiple apical views is superior for assessment of right ventricular systolic function. Clin Physiol Funct Imaging 39(2):168–176.  https://doi.org/10.1111/cpf.12552 Google Scholar
  27. 27.
    Ho SY, Nihoyannopoulos P (2006) Anatomy, echocardiography, and normal right ventricular dimensions. Heart 92(Suppl 1):i2–i13.  https://doi.org/10.1136/hrt.2005.077875 Google Scholar
  28. 28.
    Badagliacca R, Papa S, Valli G et al (2017) Right ventricular dyssynchrony and exercise capacity in idiopathic pulmonary arterial hypertension. Eur Respir J.  https://doi.org/10.1183/13993003.01419-2016 Google Scholar
  29. 29.
    Hu EC, He JG, Liu ZH et al (2014) Survival advantages of excess body mass index in patients with idiopathic pulmonary arterial hypertension. Acta Cardiol 69(6):673–678.  https://doi.org/10.2143/AC.69.6.1000010 Google Scholar
  30. 30.
    Gan CT, McCann GP, Marcus JT et al (2006) NT-proBNP reflects right ventricular structure and function in pulmonary hypertension. Eur Respir J 28(6):1190–1194.  https://doi.org/10.1183/09031936.00016006 Google Scholar
  31. 31.
    Hill SA, Booth RA, Santaguida PL et al (2014) Use of BNP and NT-proBNP for the diagnosis of heart failure in the emergency department: a systematic review of the evidence. Heart Fail Rev 19(4):421–438.  https://doi.org/10.1007/s10741-014-9447-6 Google Scholar
  32. 32.
    Tardif JC, Rouleau JL (1996) Diastolic dysfunction. Can J Cardiol 12(4):389–398Google Scholar
  33. 33.
    Nagueh SF, Appleton CP, Gillebert TC et al (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. Eur J Echocardiogr 10(2):165–193.  https://doi.org/10.1093/ejechocard/jep007 Google Scholar
  34. 34.
    Brutsaert DL, Rademakers FE, Sys SU et al (1985) Analysis of relaxation in the evaluation of ventricular function of the heart. Prog Cardiovasc Dis 28(2):143–163Google Scholar
  35. 35.
    Rehman MB, Garcia R, Christiaens L et al (2018) Power of resting echocardiographic measurements to classify pulmonary hypertension patients according to European society of cardiology exercise testing risk stratification cut-offs. Int J Cardiol 257:291–297.  https://doi.org/10.1016/j.ijcard.2018.01.042 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Bing-Yang Liu
    • 1
  • Wei-Chun Wu
    • 2
  • Qi-Xian Zeng
    • 1
  • Zhi-Hong Liu
    • 1
  • Li-Li Niu
    • 2
  • Yue Tian
    • 2
  • Xiao-Ling Cheng
    • 1
  • Qin Luo
    • 1
  • Zhi-Hui Zhao
    • 1
  • Li Huang
    • 1
  • Hao Wang
    • 2
  • Jian-Guo He
    • 1
  • Chang-Ming Xiong
    • 1
    Email author
  1. 1.Department of Cardiology, Pulmonary Vascular Disease Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople’s Republic of China
  2. 2.Department of Echocardiography, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular DiseasesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingPeople’s Republic of China

Personalised recommendations