Advertisement

The value of a simplified approach to end-systolic volume measurement for assessment of left ventricular contractile reserve during stress-echocardiography

  • Marco A. R. Torres
  • Thais F. Texeira
  • Ana C. Camarozano
  • Clarissa C. A. Bellagamba
  • Natalia M. Quevedo
  • Altair I. Heidemann Junior
  • Carolina Bertoluci
  • Tonino Bombardini
  • Michele De Nes
  • Quirino Ciampi
  • Eugenio PicanoEmail author
  • the Stress Echo 2020 study group of the Italian Society of Cardiovascular Imaging
Original Paper
  • 22 Downloads

Abstract

The peak stress/rest ratio of left ventricular (LV) elastance, or LV force, is a load-independent index of left ventricular contractile reserve (LVCR) with stress echo (SE). To assess the accuracy of LVCR calculated during SE with approaches of different complexity. Two-hundred-forty patients were referred to SE for known or suspected coronary artery disease or heart failure and, of those, 200 patients, age 61 ± 15, 99 females, with interpretable volumetric SE were enrolled. All readers had passed the upstream quality control reading for regional wall motion abnormality (RWMA) and end-systolic volume (ESV) measurement. The employed stress was dipyridamole (0.84 mg, 6 min) in 86 (43%) and dobutamine (up to 40 mcg/kg/min) in 114 (57%) patients. All underwent SE with evaluation of RWMA and simultaneous LVCR assessment with stress/rest ratio of LV force (systolic blood pressure by cuff sphygmomanometer/ESV). ESV was calculated in each patient by two of three methods: biplane Simpson rule (S, in 100 patients), single plane area-length (AL, apical four-chamber area and length, in 100 patients), and Teichholz rule (T, from parasternal long axis and/or short axis view, in 200 patients). RMWA were observed in 54 patients. Success rate for ESV measurement was 76% (100/131) for S, 92% (100/109) for AL, and 100% (240/240) for T. There were 100 paired measurements (rest and stress) with S versus T, and 100 with AL versus T. The analysis time was the shortest for T (33 ± 8 s at rest, 34 ± 7 s at stress), intermediate for AL (70 ± 22 s at rest 67 ± 21 s at stress), and the longest for S (136 ± 24 at rest 129 ± 27 s at stress, p < 0.05 vs. T and AL). ESV absolute values were moderately correlated: T versus S (r rest = 0.746, p < 0.01, n = 100; r stress = 0.794, p < 0.01, n = 100); T vs. AL (r = 0.603 p < 0.01, n = 100, at rest and r = 0.820 p < 0.01 n = 100 at peak stress). LVCR values were tightly correlated independently of the method employed: T versus S (r = 0.899, p < 0.01, n = 100), and T versus AL (r = 0.845, p < 0.01, n = 100). LVCR can be accurately determined with all three methods used to extract the raw values of ESV necessary to generate the calculation of Force. Although S is known to be more precise in determining absolute ESV values, the relative (rest-stress) changes can be assessed, with comparable accuracy, with simpler and more feasible T and AL methods, characterized by higher success rate, shorter imaging and analysis time.

Keywords

Left ventricular contractility Echocardiography Stress 

Abbreviations

AL

Area-length method

CAD

Coronary artery disease

EF

Ejection fraction

ESV

End-systolic volume

HF

Heart failure

LV

Left ventricle

LVCR

Left ventricular contractile reserve

RWMA

Regional wall motion abnormalities

S

Simpson method

SE

Stress echocardiography

T

Teichholz method

TTE

Transthoracic echocardiography

WMSI

Wall motion score index

Notes

Funding

Ageing project of Italian national Research Council (GAE P001328).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

References

  1. 1.
    Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG (2007) American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 20(9):1021–1041CrossRefGoogle Scholar
  2. 2.
    Sicari R, Nihoyannopoulos P, Evangelista A, Kasprzak J, Lancellotti P, Poldermans D (2008) Stress echocardiography expert consensus statement: european Association of Echocardiography (EAE) (a registered branch of the ESC). Eur J Echocardiogr 9:415–437CrossRefGoogle Scholar
  3. 3.
    Lancellotti P, Pellikka PA, Budts W, Chaudhry FA, Donal E, Dulgheru R, Edvardsen T, Garbi M, Ha JW, Kane GC, Kreeger J, Mertens L, Pibarot P, Picano E, Ryan T, Tsutsui JM, Varga A (2016) The clinical use of stress echocardiography in non-ischaemic heart disease: recommendations from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J Cardiovasc Imaging 17:1191–1229CrossRefGoogle Scholar
  4. 4.
    Ginzton LE, Laks MM, Brizendine M, Conant R, Mena I (1984) Noninvasive measurement of the rest and exercise peak systolic pressure/end-systolic volume ratio: a sensitive two-dimensional echocardiographic indicator of left ventricular function. J Am Coll Cardiol 4:509–516CrossRefGoogle Scholar
  5. 5.
    Sagawa K, Suga H, Shoukas AA, Bakalar KM (1977) End-systolic pressure/volume ratio: a new index of ventricular contractility. Am J Cardiol 40:748–753CrossRefGoogle Scholar
  6. 6.
    Bombardini T, Correia MJ, Cicerone C, Agricola E, Ripoli A, Picano E (2003) Force-frequency relationship in the echocardiography laboratory: a noninvasive assessment of Bowditch Treppe? J Am Soc Echocardiogr 16:646–655CrossRefGoogle Scholar
  7. 7.
    Cikes M, Solomon SD (2016) Beyond ejection fraction: an integrative approach for assessment of cardiac structure and function in heart failure. Eur Heart J 37:1642–1650CrossRefGoogle Scholar
  8. 8.
    Bombardini T, Mulieri LA, Salvadori S, Costantino MF, Scali MC, Marzilli M, Picano E (2017) Pressure-Volume relationship in Stress echocardiography laboratory: does (left ventricular end-diastoli) size matter? Rev Esp Cardiol 70:96–104CrossRefGoogle Scholar
  9. 9.
    Grosu A, Bombardini T, Senni M, Duino V, Gori M, Picano E (2005) End-systolic pressure/volume relationship during dobutamine stress echo: a prognostically useful non-invasive index of left ventricular contractility. Eur Heart J 26:2404–2412CrossRefGoogle Scholar
  10. 10.
    Cortigiani L, Bombardini T, Corbisiero A, Mazzoni A, Bovenzi F, Picano E (2009) The additive prognostic value of end-systolic pressure-volume relation in patients with diabetes mellitus having negative dobutamine stress echocardiography by wall motion criteria. Heart 95:1429–1435CrossRefGoogle Scholar
  11. 11.
    Bombardini T, Costantino MF, Sicari R, Ciampi Q, Pratali L, Picano E (2013) End-systolic elastance and ventricular-arterial coupling reserve predict cardiac events in patients with negative stress echocardiography. Biomed Res Int 2013:235194CrossRefGoogle Scholar
  12. 12.
    Cortigiani L, Huqi A, Ciampi Q, Bombardini T, Bovenzi F, Picano E (2018) Integration of Wall Motion, Coronary Flow Velocity, and Left Ventricular Contractile Reserve in a Single Test: prognostic Value of Vasodilator Stress Echocardiography in Patients with Diabetes. J Am Soc Echocardiogr 31:692–701CrossRefGoogle Scholar
  13. 13.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39. e14CrossRefGoogle Scholar
  14. 14.
    Martin TW, Seaworth JF, Johns JP, Pupa LE, Condos WR (1992) Comparison of Adenosine, Dipyridamole, and Dobutamine in Stress Echocardiography. Ann Intern Med 116:190–196CrossRefGoogle Scholar
  15. 15.
    Wahr DW, Wang YS, Schiller NB (1983) Left ventricular volumes determined by two-dimensional echocardiography in a normal adult population. J Am Coll Cardiol 1:863–868CrossRefGoogle Scholar
  16. 16.
    Teichholz LE, Kreulen T, Herman MV, Gorlin R (1976) Problems in echocardiographic volume determinations: echocardiographic-angiographic correlations in the presence of absence of asynergy. Am J Cardiol 37:7–11CrossRefGoogle Scholar
  17. 17.
    Picano E, Ciampi Q, Citro R, D’Andrea A, Scali MC, Cortigiani L, Olivotto I, Mori F, Galderisi M, Costantino MF, Pratali L, Di Salvo G, Bossone E, Ferrara F, Gargani L, Rigo F, Gaibazzi N, Limongelli G, Pacileo G, Andreassi MG, Pinamonti B, Massa L, Torres MAR, Miglioranza MH, Daros CB, de Castro e Silva Pretto JL, Beleslin B, Djordjevic-Dikic A, Varga A, Palinkas A, Agoston G, Gregori D, Trambaiolo P, Severino S, Arystan A, Paterni M, Carpeggiani C, Colonna P (2017) Stress echo 2020: the international Stress Echo study in ischemic and non-ischemic heart disease. Cardiovasc Ultrasound.  https://doi.org/10.1186/s12947-016-0092-1 Google Scholar
  18. 18.
    Ciampi Q, Picano E, Paterni M, Borguezan Daros C, Simova I, de Castro e Silva Pretto JL, Scali MC, Gaibazzi N, Severino S, Djordjevic-Dikic A, Kasprzak J, Zagatina A, Varga A, Lowenstein J, Merlo PM, Amor M, Celeutkiene J, Perez J, Di Salvo G, Galderisi M, Mori F, Costantino FM, Massa L, Dekleva M, Quesada Chavez D, Trambaiolo P, Citro R, Colonna P, Rigo F, Torres ARM, Monte I, Stankovic I, Neskovic A, Cortigiani L, Re F, Dodi C, D’Andrea A, Villari B, Arystan A, De Nes M, Carpeggiani C, on behalf of Stress Echo 2020 study group of the Italian Society of Cardiovascular Echography (2017) Quality Control of Regional Wall Motion Analysis in Stress echo 2020. Int J Cardiol 249:479–485CrossRefGoogle Scholar
  19. 19.
    Carpeggiani C, Ciampi Q, Paterni M, De Nes M, Zagatina A, Simova I, Djordievic-Dikic A, Citro R, Colonna P, Picano E (2019) Multi-step Web-based Training: the road to Stress echo 2020. Arg J Cardiol 86(6):404–409Google Scholar
  20. 20.
    Hinkle DE, Wiersma W, Jurs SG (2003) Applied statistics for the behavioral sciences. Houghton Mifflin College Division, Boston, p 756Google Scholar
  21. 21.
    Bombardini T, Agrusta M, Natsvlishvili N, Solimene F, Pap R, Coltorti F, Varga A, Mottola G, Picano E (2005) Noninvasive assessment of left ventricular contractility by pacemaker stress echocardiography. Eur J Heart Fail 7:173–181CrossRefGoogle Scholar
  22. 22.
    Turakhia MP, McManus DD, Whooley MA, Schiller NB (2009) Increase in end-systolic volume after exercise independently predicts mortality in patients with coronary heart disease: data from the Heart and Soul Study. Eur Heart J 30:2478–2484CrossRefGoogle Scholar
  23. 23.
    Picano E, Faletra F, Marini C, Paterni M, Danzi GB, Lombardi M, Campolo L, Gigli G, Landini L, Pezzano A, Distante A (1993) Increased echodensity of transiently asynergic myocardium in humans: a novel echocardiographic sign of myocardial ischemia. J Am Coll Cardiol 21:199–207CrossRefGoogle Scholar
  24. 24.
    Kataoka A, Scherrer-Crosbie M, Senior R, Gosselin G, Phaneuf D, Guzman G, Perna G, Lara A, Kedev S, Mortara A, El-Hajjar M, Shaw LJ, Reynolds HR, Picard MH (2015) The value of core lab stress echocardiography interpretations: observations from the ISCHEMIA Trial. Cardiovasc Ultrasound 13(1):47CrossRefGoogle Scholar
  25. 25.
    Thavendiranathan P, Popović ZB, Flamm SD, Dahiya A, Grimm RA, Marwick TH (2013) Improved interobserver variability and accuracy of echocardiographic visual left ventricular ejection fraction assessment through a self-directed learning program using cardiac magnetic resonance images. J Am Soc Echocardiogr 26:1267–1273CrossRefGoogle Scholar
  26. 26.
    Schiller NB (2012) Gaining respect for echocardiographic volumetric quantitation: observations on a study of the baseline echocardiography data from the STICH echocardiography core laboratory. J Am Soc Echocardiogr 25:337–340CrossRefGoogle Scholar
  27. 27.
    Picano E, Pellikka PA (2014) Stress echo applications beyond coronary artery disease. Eur Heart J 35:1033–1040CrossRefGoogle Scholar
  28. 28.
    Mada RO, Lysyansky P, Daraban AM, Duchenne J, Voigt J-U (2015) How to define end-diastole and end-systole? JACC Cardiovasc Imaging 8:148–157CrossRefGoogle Scholar
  29. 29.
    Grossgasteiger M, Hien MD, Graser B, Rauch H, Motsch J, Gondan M, Rosendal C (2014) Image quality influences the assessment of left ventricular function: an intraoperative comparison of five 2-dimensional echocardiographic methods with real-time 3-dimensional echocardiography as a reference. Ultrasound Med. 33(2):297–306.  https://doi.org/10.7863/ultra.33.2.297 CrossRefGoogle Scholar
  30. 30.
    Picano E, Ciampi Q, Wierzbowska-Drabik K, Urluescu ML, Morrone D, Carpeggiani C (2018) The new clinical standard of integrated quadruple stress echocardiography with ABCD protocol. Cardiov Ultrasound 16:22.  https://doi.org/10.1186/s12947-018-0141-z CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Marco A. R. Torres
    • 1
  • Thais F. Texeira
    • 1
  • Ana C. Camarozano
    • 2
  • Clarissa C. A. Bellagamba
    • 1
  • Natalia M. Quevedo
    • 2
  • Altair I. Heidemann Junior
    • 1
  • Carolina Bertoluci
    • 1
  • Tonino Bombardini
    • 3
  • Michele De Nes
    • 3
  • Quirino Ciampi
    • 4
  • Eugenio Picano
    • 3
    Email author
  • the Stress Echo 2020 study group of the Italian Society of Cardiovascular Imaging
  1. 1.Hospital de Clinicas de Porto Alegre - Universidade Federal do Rio Grande do SulPorto AlegreBrazil
  2. 2.Hospital de Clinicas UFPR, Medicine Department, Federal University of ParanàCuritibaBrazil
  3. 3.Biomedicine DepartmentInstitute of Clinical Physiology, CNRPisaItaly
  4. 4.Cardiology DivisionFatebenefratelli HospitalBeneventoItaly

Personalised recommendations