Incremental value of extracellular volume assessment by cardiovascular magnetic resonance imaging in risk stratifying patients with suspected myocarditis

  • Christoph Gräni
  • Loïc Bière
  • Christian Eichhorn
  • Kyoichi Kaneko
  • Vikram Agarwal
  • Ayaz Aghayev
  • Michael Steigner
  • Ron Blankstein
  • Michael Jerosch-Herold
  • Raymond Y. KwongEmail author
Origina Paper


Cardiovascular magnetic resonance imaging (CMR) has become a key investigative tool in patients with suspected myocarditis. However, the prognostic implications of T1 mapping, including extracellular volume (ECV) calculation, is less clear. Patients with suspected myocarditis who underwent CMR evaluation, including T1 mapping at our institution were included. CMR findings including late gadolinium enhancement (LGE), left ventricular ejection fraction (LVEF), native T1 mapping, and ECV calculation were associated with first major adverse cardiac events (MACE). MACE included a composite of all-cause death, heart failure hospitalization, heart transplantation, documented sustained ventricular arrhythmia, and recurrent myocarditis. One hundred seventy-nine patients with a mean age of 49 ± 15 years were identified. Seventy nine individuals (44%) were female. Mean LVEF was 48 ± 16. At a median follow-up of 4.1 [interquartile-range (IQR) 2.2–6.1] years, 22 (12%) patients experienced a MACE. Mean ECV (per 10%) was significantly associated with MACE (HR 2.09, 95% CI 1.07–4.08, p = 0.031). Presence of ECV ≥ 35% demonstrated significant univariable association with MACE (HR 3.3, 95% CI 1.43–7.97, p = 0.005) and such association was maintained when adjusted to LVEF (HR 3.42, 95% CI 1.42–7.94, p = 0.006). ECV ≥ 35% portended a greater than threefold increased hazards to MACE adjusted to LGE presence (HR 3.14, 95% CI 1.29–7.36, p = 0.012). In patients without LGE, ECV ≥ 35% portended a greater than sixfold increased hazards (HR 6.6, p = 0.010). In the multivariable model including age, LVEF and LGE size, only ECV ≥ 35% maintained its significant association with outcome. ECV calculation by CMR is a useful tool in the risk stratification of patients with clinically suspected myocarditis, incremental to LGE and LVEF.


Myocarditis Outcome CMR Cardiovascular magnetic resonance imaging Extracellular volume T1 mapping 



Cardiovascular magnetic resonance imaging




Extracellular volume


Endomyocardial biopsy


Late gadolinium enhancement


Left ventricular ejection fraction



Dr. Gräni receives funding support from the Novartis Foundation for Medical-Biological Research, Bangerter-Rhyner Foundation, Swiss Sports Medicine Society (SGSM) and Kreislauf Kardiologie Foundation. Dr. Kwong receives research support from NIH awards 1UH2 TR000901, 1RO1DK083424-01, and 1U01HL117006, Alnylam Pharmaceuticals, and the Society for the Cardiovascular Magnetic Resonance.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Cooper LT Jr (2009) Myocarditis. N Engl J Med 360(15):1526–1538. CrossRefGoogle Scholar
  2. 2.
    Iles LM, Taylor AJ (2013) Is one better than two?: T1 mapping in myocarditis. JACC Cardiovasc Imaging 6(10):1059–1061. CrossRefGoogle Scholar
  3. 3.
    Grun S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O, Kispert EM, Hill S, Ong P, Klingel K, Kandolf R, Sechtem U, Mahrholdt H (2012) Long-term follow-up of biopsy-proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 59(18):1604–1615. CrossRefGoogle Scholar
  4. 4.
    Nakagawa M, Sato A, Okagawa H, Kondo M, Okuno M, Takamatsu T (1999) Detection and evaluation of asymptomatic myocarditis in schoolchildren: report of four cases. Chest 116(2):340–345CrossRefGoogle Scholar
  5. 5.
    Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, Aletras A, Laissy JP, Paterson I, Filipchuk NG, Kumar A, Pauschinger M, Liu P (2009) Cardiovascular magnetic resonance in myocarditis: A JACC White Paper. J Am Coll Cardiol 53(17):1475–1487. CrossRefGoogle Scholar
  6. 6.
    Grani C, Eichhorn C, Biere L, Murthy VL, Agarwal V, Kaneko K, Cuddy S, Aghayev A, Steigner M, Blankstein R, Jerosch-Herold M, Kwong RY (2017) Prognostic value of cardiac magnetic resonance tissue characterization in risk stratifying patients with suspected myocarditis. J Am Coll Cardiol 70(16):1964–1976. CrossRefGoogle Scholar
  7. 7.
    Diao KY, Yang ZG, Xu HY, Liu X, Zhang Q, Shi K, Jiang L, Xie LJ, Wen LY, Guo YK (2016) Histologic validation of myocardial fibrosis measured by T1 mapping: a systematic review and meta-analysis. J Cardiovasc Magn Reson 18(1):92. CrossRefGoogle Scholar
  8. 8.
    Ide S, Riesenkampff E, Chiasson DA, Dipchand AI, Kantor PF, Chaturvedi RR, Yoo SJ, Grosse-Wortmann L (2017) Histological validation of cardiovascular magnetic resonance T1 mapping markers of myocardial fibrosis in paediatric heart transplant recipients. J Cardiovasc Magn Reson 19(1):10. CrossRefGoogle Scholar
  9. 9.
    Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92. CrossRefGoogle Scholar
  10. 10.
    Lurz P, Luecke C, Eitel I, Fohrenbach F, Frank C, Grothoff M, de Waha S, Rommel KP, Lurz JA, Klingel K, Kandolf R, Schuler G, Thiele H, Gutberlet M (2016) Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: the MyoRacer-Trial. J Am Coll Cardiol 67(15):1800–1811. CrossRefGoogle Scholar
  11. 11.
    Schelbert EB, Piehler KM, Zareba KM, Moon JC, Ugander M, Messroghli DR, Valeti US, Chang CC, Shroff SG, Diez J, Miller CA, Schmitt M, Kellman P, Butler J, Gheorghiade M, Wong TC (2015) Myocardial fibrosis quantified by extracellular volume is associated with subsequent hospitalization for heart failure, death, or both across the spectrum of ejection fraction and heart failure stage. J Am Heart Assoc. Google Scholar
  12. 12.
    Coelho-Filho OR, Mongeon FP, Mitchell R, Moreno H Jr, Nadruz W Jr, Kwong R, Jerosch-Herold M (2013) Role of transcytolemmal water-exchange in magnetic resonance measurements of diffuse myocardial fibrosis in hypertensive heart disease. Circ Cardiovasc Imaging 6(1):134–141. CrossRefGoogle Scholar
  13. 13.
    Flett AS, Hasleton J, Cook C, Hausenloy D, Quarta G, Ariti C, Muthurangu V, Moon JC (2011) Evaluation of techniques for the quantification of myocardial scar of differing etiology using cardiac magnetic resonance. JACC Cardiovasc Imaging 4(2):150–156. CrossRefGoogle Scholar
  14. 14.
    Neilan TG, Coelho-Filho OR, Shah RV, Abbasi SA, Heydari B, Watanabe E, Chen Y, Mandry D, Pierre-Mongeon F, Blankstein R, Kwong RY, Jerosch-Herold M (2013) Myocardial extracellular volume fraction from T1 measurements in healthy volunteers and mice: relationship to aging and cardiac dimensions. JACC Cardiovasc Imaging 6(6):672–683. CrossRefGoogle Scholar
  15. 15.
    Zannad F, Stough WG, Pitt B, Cleland JG, Adams KF, Geller NL, Torp-Pedersen C, Kirwan BA, Follath F (2008) Heart failure as an endpoint in heart failure and non-heart failure cardiovascular clinical trials: the need for a consensus definition. Eur Heart J 29(3):413–421. CrossRefGoogle Scholar
  16. 16.
    Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JG, Coats AJ, Falk V, Gonzalez-Juanatey JR, Harjola VP, Jankowska EA, Jessup M, Linde C, Nihoyannopoulos P, Parissis JT, Pieske B, Riley JP, Rosano GM, Ruilope LM, Ruschitzka F, Rutten FH, van der Meer P, Authors/Task Force Member (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 37(27):2129–2200. CrossRefGoogle Scholar
  17. 17.
    Miller CA, Naish JH, Bishop P, Coutts G, Clark D, Zhao S, Ray SG, Yonan N, Williams SG, Flett AS, Moon JC, Greiser A, Parker GJ, Schmitt M (2013) Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 6(3):373–383. CrossRefGoogle Scholar
  18. 18.
    Fontana M, White SK, Banypersad SM, Sado DM, Maestrini V, Flett AS, Piechnik SK, Neubauer S, Roberts N, Moon JC (2012) Comparison of T1 mapping techniques for ECV quantification. Histological validation and reproducibility of ShMOLLI versus multibreath-hold T1 quantification equilibrium contrast CMR. J Cardiovasc Magn Reson 14:88. CrossRefGoogle Scholar
  19. 19.
    Izawa H, Murohara T, Nagata K, Isobe S, Asano H, Amano T, Ichihara S, Kato T, Ohshima S, Murase Y, Iino S, Obata K, Noda A, Okumura K, Yokota M (2005) Mineralocorticoid receptor antagonism ameliorates left ventricular diastolic dysfunction and myocardial fibrosis in mildly symptomatic patients with idiopathic dilated cardiomyopathy: a pilot study. Circulation 112(19):2940–2945. CrossRefGoogle Scholar
  20. 20.
    Kawara T, Derksen R, de Groot JR, Coronel R, Tasseron S, Linnenbank AC, Hauer RN, Kirkels H, Janse MJ, de Bakker JM (2001) Activation delay after premature stimulation in chronically diseased human myocardium relates to the architecture of interstitial fibrosis. Circulation 104(25):3069–3075CrossRefGoogle Scholar
  21. 21.
    Schwartzkopff B, Brehm M, Mundhenke M, Strauer BE (2000) Repair of coronary arterioles after treatment with perindopril in hypertensive heart disease. Hypertension (Dallas Tex 1979) 36(2):220–225CrossRefGoogle Scholar
  22. 22.
    Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Juhani Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108(14):1664–1672. CrossRefGoogle Scholar
  23. 23.
    Banypersad SM, Fontana M, Maestrini V, Sado DM, Captur G, Petrie A, Piechnik SK, Whelan CJ, Herrey AS, Gillmore JD, Lachmann HJ, Wechalekar AD, Hawkins PN, Moon JC (2015) T1 mapping and survival in systemic light-chain amyloidosis. Eur Heart J 36(4):244–251. CrossRefGoogle Scholar
  24. 24.
    Wong TC, Piehler K, Meier CG, Testa SM, Klock AM, Aneizi AA, Shakesprere J, Kellman P, Shroff SG, Schwartzman DS, Mulukutla SR, Simon MA, Schelbert EB (2012) Association between extracellular matrix expansion quantified by cardiovascular magnetic resonance and short-term mortality. Circulation 126(10):1206–1216. CrossRefGoogle Scholar
  25. 25.
    Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS, Mulukutla SR, Simon MA, Shroff SG, Kuller LH, Schelbert EB (2014) Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 35(10):657–664. CrossRefGoogle Scholar
  26. 26.
    aus dem Siepen F, Buss SJ, Messroghli D, Andre F, Lossnitzer D, Seitz S, Keller M, Schnabel PA, Giannitsis E, Korosoglou G, Katus HA, Steen H (2015) T1 mapping in dilated cardiomyopathy with cardiac magnetic resonance: quantification of diffuse myocardial fibrosis and comparison with endomyocardial biopsy. Eur Heart J Cardiovasc Imaging 16(2):210–216. CrossRefGoogle Scholar
  27. 27.
    Puntmann VO, Voigt T, Chen Z, Mayr M, Karim R, Rhode K, Pastor A, Carr-White G, Razavi R, Schaeffter T, Nagel E (2013) Native T1 mapping in differentiation of normal myocardium from diffuse disease in hypertrophic and dilated cardiomyopathy. JACC Cardiovasc Imaging 6(4):475–484. CrossRefGoogle Scholar
  28. 28.
    Chin CW, Semple S, Malley T, White AC, Mirsadraee S, Weale PJ, Prasad S, Newby DE, Dweck MR (2014) Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging 15(5):556–565. CrossRefGoogle Scholar
  29. 29.
    Mascherbauer J, Marzluf BA, Tufaro C, Pfaffenberger S, Graf A, Wexberg P, Panzenbock A, Jakowitsch J, Bangert C, Laimer D, Schreiber C, Karakus G, Hulsmann M, Pacher R, Lang IM, Maurer G, Bonderman D (2013) Cardiac magnetic resonance postcontrast T1 time is associated with outcome in patients with heart failure and preserved ejection fraction. Circ Cardiovasc Imaging 6(6):1056–1065. CrossRefGoogle Scholar
  30. 30.
    Tamarappoo BK, John BT, Reinier K, Teodorescu C, Uy-Evanado A, Gunson K, Jui J, Chugh SS (2012) Vulnerable myocardial interstitium in patients with isolated left ventricular hypertrophy and sudden cardiac death: a postmortem histological evaluation. J Am Heart Assoc 1(3):e001511. CrossRefGoogle Scholar
  31. 31.
    Francone M, Chimenti C, Galea N, Scopelliti F, Verardo R, Galea R, Carbone I, Catalano C, Fedele F, Frustaci A (2014) CMR sensitivity varies with clinical presentation and extent of cell necrosis in biopsy-proven acute myocarditis. JACC Cardiovasc Imaging 7(3):254–263. CrossRefGoogle Scholar
  32. 32.
    Lurz JA, Luecke C, Lang D, Besler C, Rommel KP, Klingel K, Kandolf R, Adams V, Schone K, Hindricks G, Schuler G, Linke A, Thiele H, Gutberlet M, Lurz P (2018) CMR-derived extracellular volume fraction as a marker for myocardial fibrosis: the importance of coexisting myocardial inflammation. JACC Cardiovasc Imaging 11(1):38–45. CrossRefGoogle Scholar
  33. 33.
    Hinojar R, Foote L, Arroyo Ucar E, Jackson T, Jabbour A, Yu CY, McCrohon J, Higgins DM, Carr-White G, Mayr M, Nagel E, Puntmann VO (2015) Native T1 in discrimination of acute and convalescent stages in patients with clinical diagnosis of myocarditis: a proposed diagnostic algorithm using CMR. JACC Cardiovasc Imaging 8(1):37–46. CrossRefGoogle Scholar
  34. 34.
    Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi N, Holloway C, Choudhury RP, Kardos A, Robson MD, Friedrich MG, Neubauer S (2013) T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 6(10):1048–1058. CrossRefGoogle Scholar
  35. 35.
    Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi N, Holloway C, Choudhury RP, Kardos A, Robson MD, Friedrich MG, Neubauer S (2014) Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents. J Cardiovasc Magnetic Reson 16:36. CrossRefGoogle Scholar
  36. 36.
    Haaf P, Garg P, Messroghli DR, Broadbent DA, Greenwood JP, Plein S (2016) Cardiac T1 mapping and extracellular volume (ECV) in clinical practice: a comprehensive review. J Cardiovasc Magnetic Reson 18(1):89. CrossRefGoogle Scholar
  37. 37.
    Liu PP, Mason JW (2001) Advances in the understanding of myocarditis. Circulation 104(9):1076–1082CrossRefGoogle Scholar
  38. 38.
    Puntmann VO, Carr-White G, Jabbour A, Yu CY, Gebker R, Kelle S, Hinojar R, Doltra A, Varma N, Child N, Rogers T, Suna G, Arroyo Ucar E, Goodman B, Khan S, Dabir D, Herrmann E, Zeiher AM, Nagel E (2016) T1-mapping and outcome in nonischemic cardiomyopathy: all-cause mortality and heart failure. JACC Cardiovasc Imaging 9(1):40–50. CrossRefGoogle Scholar
  39. 39.
    Luetkens JA, Homsi R, Dabir D, Kuetting DL, Marx C, Doerner J, Schlesinger-Irsch U, Andrie R, Sprinkart AM, Schmeel FC, Stehning C, Fimmers R, Gieseke J, Naehle CP, Schild HH, Thomas DK (2016) Comprehensive cardiac magnetic resonance for short-term follow-up in acute myocarditis. J Am Heart Assoc 5 (7):e003603. CrossRefGoogle Scholar
  40. 40.
    Spieker M, Haberkorn S, Gastl M, Behm P, Katsianos S, Horn P, Jacoby C, Schnackenburg B, Reinecke P, Kelm M, Westenfeld R, Bonner F (2017) Abnormal T2 mapping cardiovascular magnetic resonance correlates with adverse clinical outcome in patients with suspected acute myocarditis. J Cardiovasc Magn Reson 19(1):38. CrossRefGoogle Scholar
  41. 41.
    Robson MD, Piechnik SK, Tunnicliffe EM, Neubauer S (2013) T1 measurements in the human myocardium: the effects of magnetization transfer on the SASHA and MOLLI sequences. Magn Reson Med 70(3):664–670. CrossRefGoogle Scholar
  42. 42.
    Nacif MS, Turkbey EB, Gai N, Nazarian S, van der Geest RJ, Noureldin RA, Sibley CT, Ugander M, Liu S, Arai AE, Lima JA, Bluemke DA (2011) Myocardial T1 mapping with MRI: comparison of look-locker and MOLLI sequences. J Magn Reson Imaging 34(6):1367–1373. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Christoph Gräni
    • 1
  • Loïc Bière
    • 1
  • Christian Eichhorn
    • 1
  • Kyoichi Kaneko
    • 1
  • Vikram Agarwal
    • 2
  • Ayaz Aghayev
    • 2
  • Michael Steigner
    • 2
  • Ron Blankstein
    • 2
  • Michael Jerosch-Herold
    • 2
  • Raymond Y. Kwong
    • 1
    Email author
  1. 1.Non-invasive Cardiovascular Imaging, Cardiovascular Division, Department of Medicine, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA
  2. 2.Non-invasive Cardiovascular Imaging, Department of Radiology, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations