The effect of heart rate on coronary plaque measurements in 320-row coronary CT angiography


Repeatability of quantitative assessment of atherosclerotic plaques is important for the accurate detection of high-risk plaques in coronary CT angiography (CTA). We assessed the effect of heart rate (HR) on plaque CT number using a coronary artery model and a cardiac phantom capable of simulating cardiac motion. The coronary artery model with luminal stenosis on a cardiac phantom was imaged with a simulated HR of 0, 50, 60, and 70 beats per minute using a 320-row CT scanner. We reconstructed CT images for cardiac diastolic phases (for 75% R–R interval) using filtered back projection (FBP), hybrid iterative reconstruction (AIDR3D), and model-based iterative reconstruction (FIRST). Two observers measured plaque attenuation in the lesion with 75% stenosis. The coefficient of determination (R2) was obtained to evaluate interobserver agreement. At HR 70, FIRST improved the correlation between two observers compared with FBP and AIDR3D (FIRST: R2 = 0.68, p < 0.05; FBP: R2 = 0.29, p = 0.31; AIDR3D: R2 = 0.22, p = 0.18). These R2 at HR 70 were lower compared with at HR 50 (FIRST: R2 = 0.92, p < 0.05; FBP: R2 = 0.83, p < 0.05; AIDR3D: R2 = 0.87, p < 0.05) and HR 0 (FIRST: R2 = 0.97, p < 0.05; FBP: R2 = 0.89, p < 0.05; AIDR3D: R2 = 0.95, p < 0.05). Higher HR affected plaque measurement repeatability in coronary CTA. FIRST may improve plaque measurement repeatability at the higher HR compared with FBP and AIDR3D.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3



Computed tomography angiography


Hounsfield unit


Intravascular ultrasound


Heart rate


Beats per minute


Filtered back projection


Adaptive iterative dose reduction 3D


Forward projected model-based iterative reconstruction solution


Region of interest


Standard deviation


Intraclass correlation coefficients


Limits of agreement


Coronary Artery Disease Reporting and Data System


Mean difference




  1. 1.

    Miller JM, Rochitte CE, Dewey M et al (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336

  2. 2.

    Gu H, Gao Y, Hou Z et al (2017) Prognostic value of coronary atherosclerosis progression evaluated by coronary CT angiography in patients with stable angina. Eur Radiol 28:1066–1076

  3. 3.

    Ghoshhajra BB, Takx RAP, Staziaki PV et al (2017) Clinical implementation of an emergency department coronary computed tomographic angiography protocol for triage of patients with suspected acute coronary syndrome. Eur Radiol 27(7):2784–2793

  4. 4.

    Ferencik M, Mayrhofer T, Puchner SB et al (2015) Computed tomography-based high-risk coronary plaque score to predict acute coronary syndrome among patients with acute chest pain—results from the ROMICAT II trial. J Cardiovasc Comput Tomogr 9(6):538–545

  5. 5.

    Cury RC, Abbara S, Achenbach S et al (2016) CAD-RADS (TM) Coronary artery disease—reporting and data system. An expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT), the American College of Radiology (ACR) and the North American Society for Cardiovascular Imaging (NASCI). Endorsed by the American College of Cardiology. J Cardiovasc Comput Tomogr 10(4):269–281

  6. 6.

    Tarkin JM, Dweck MR, Evans NR et al (2016) Imaging atherosclerosis. Circ Res 118(4):750–769

  7. 7.

    Motoyama S, Sarai M, Harigaya H et al (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54(1):49–57

  8. 8.

    Szilveszter B, Celeng C, Maurovich-Horvat P (2016) Plaque assessment by coronary CT. Int J Cardiovasc Imaging 32(1):161–172

  9. 9.

    Shaw LJ, Narula J, Chandrashekhar Y (2015) The never-ending story on coronary calcium: is it predictive, punitive, or protective? J Am Coll Cardiol 65(13):1283–1285

  10. 10.

    Kitagawa T, Yamamoto H, Horiguchi J et al (2011) Effects of statin therapy on non-calcified coronary plaque assessed by 64-slice computed tomography. Int J Cardiol 150(2):146–150

  11. 11.

    Auscher S, Heinsen L, Nieman K et al (2015) Effects of intensive lipid-lowering therapy on coronary plaques composition in patients with acute myocardial infarction: assessment with serial coronary CT angiography. Atherosclerosis 241(2):579–587

  12. 12.

    Cademartiri F, Mollet NR, Runza G et al (2005) Influence of intracoronary attenuation on coronary plaque measurements using multislice computed tomography: observations in an ex vivo model of coronary computed tomography angiography. Eur Radiol 15(7):1426–1431

  13. 13.

    Achenbach S, Boehmer K, Pflederer T et al (2010) Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J Cardiovasc Comput Tomogr 4(2):110–115

  14. 14.

    Suzuki S, Furui S, Kuwahara S et al (2006) Accuracy of attenuation measurement of vascular wall in vitro on computed tomography angiography: effect of wall thickness, density of contrast medium, and measurement point. Invest Radiol 41(6):510–515

  15. 15.

    Kidoh M, Utsunomiya D, Oda S et al (2016) Evaluation of the effect of intracoronary attenuation on coronary plaque measurements using a dual-phase coronary CT angiography technique on a 320-row CT scanner—in vivo validation study. Acad Radiol 23(3):315–320

  16. 16.

    Tanami Y, Ikeda E, Jinzaki M et al (2010) Computed tomographic attenuation value of coronary atherosclerotic plaques with different tube voltage: an ex vivo study. J Comput Assist Tomogr 34(1):58–63

  17. 17.

    Dalager MG, Bottcher M, Dalager S et al (2011) Imaging atherosclerotic plaques by cardiac computed tomography in vitro: impact of contrast type and acquisition protocol. Invest Radiol 46(12):790–795

  18. 18.

    Arbab-Zadeh A, Texter J, Ostbye KM et al (2010) Quantification of lumen stenoses with known dimensions by conventional angiography and computed tomography: implications of using conventional angiography as gold standard. Heart 96(17):1358–1363

  19. 19.

    Seifarth H, Wienbeck S, Pusken M et al (2007) Optimal systolic and diastolic reconstruction windows for coronary CT angiography using dual-source CT. AJR Am J Roentgenol 189(6):1317–1323

  20. 20.

    Araoz PA, Kirsch J, Primak AN et al (2009) Optimal image reconstruction phase at low and high heart rates in dual-source CT coronary angiography. Int J Cardiovasc Imaging 25(8):837–845

  21. 21.

    Funama Y, Utsunomiya D, Hirata K et al (2017) Improved estimation of coronary plaque and luminal attenuation using a vendor-specific model-based iterative reconstruction algorithm in contrast-enhanced ct coronary angiography. Acad Radiol 24(9):1070–1078

  22. 22.

    Tatsugami F, Higaki T, Sakane H et al (2017) Coronary artery stent evaluation with model-based iterative reconstruction at coronary CT angiography. Acad Radiol 24(8):975–981

  23. 23.

    Dalager MG, Bottcher M, Andersen G et al (2011) Impact of luminal density on plaque classification by CT coronary angiography. Int J Cardiovasc Imaging 27(4):593–600

  24. 24.

    Linsen PV, Coenen A, Lubbers MM, Dijkshoorn ML, Ouhlous M, Nieman K (2016) Computed tomography angiography with a 192-slice dual-source computed tomography system: improvements in image quality and radiation dose. J Clin Imaging Sci 6:44

  25. 25.

    Leipsic J, Labounty TM, Hague CJ et al (2012) Effect of a novel vendor-specific motion-correction algorithm on image quality and diagnostic accuracy in persons undergoing coronary CT angiography without rate-control medications. J Cardiovasc Comput Tomogr 6(3):164–171

Download references

Author information

Correspondence to Masafumi Kidoh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MOV 6650 KB)

Supplementary material 1 (MOV 6650 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kidoh, M., Utsunomiya, D., Funama, Y. et al. The effect of heart rate on coronary plaque measurements in 320-row coronary CT angiography. Int J Cardiovasc Imaging 34, 1977–1985 (2018) doi:10.1007/s10554-018-1415-0

Download citation


  • Coronary computed tomography angiography
  • Coronary artery disease
  • Coronary artery plaque
  • Non-calcified plaque
  • Model-based iterative reconstruction