Skip to main content

Advertisement

Log in

Investigation of circle of Willis variants and hemodynamic parameters in twins using transcranial color-coded Doppler sonography

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Morphological and hemodynamic variations of the circle of Willis (CW) may have an important impact on cerebrovascular events. However, the environmental and genetic influence remains unclear. For this reason we studied the variations and hemodynamic parameters of the CW in twins using transcranial color-coded sonography (TCCS). Sixty-four twins, 19 monozygotic (MZ) and 13 dizygotic (DZ) pairs from the Italian Twin Registry (average age 45.0 ± 13.7 years) underwent TCCS and risk factor assessment. We examined CW morphology and recorded peak systolic velocity (PSV), end-diastolic velocity (EDV) and pulsatility index (PI). Raw heritability was determined for hemodynamic parameters, whereas concordance and discordance rates were calculated for CW morphological variants. A normal CW anatomy was observed in the majority of MZ and DZ twins (76.5% and 92.3%, respectively). The most frequent variant was a missing anterior cerebral artery (ACA). There was no significant difference in the prevalence of most CW variants depending on the zigosity. Concordance rates were low regarding the presence of variant CW anatomy both in MZ and DZ groups (0.14 and 0.00, respectively). Women had a significantly higher PI in vertebral arteries (VA) and in the right ACA (p = 0.01, p = 0.02 and p < 0.01, respectively). An inverse correlation was observed between hemodynamic parameters and age. Morphological variants of the CW do not seem to be heritable; they are most likely determined by environmental factors. In contrast, hemodynamic parameters of the CW are moderately heritable and this might have implications in the management and prevention of cerebrovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schomer DF, Marks MP, Steinberg GK, Johnstone IM, Boothroyd DB, Ross MR, Pelc NJ, Enzmann DR (1994) The anatomy of the posterior communicating artery as a risk factor for ischemic cerebral infarction. N Engl J Med 330(22):1565–1570. https://doi.org/10.1056/NEJM199406023302204

    Article  PubMed  CAS  Google Scholar 

  2. Zhang C, Wang L, Li X, Li S, Pu F, Fan Y, Li D (2014) Modeling the circle of Willis to assess the effect of anatomical variations on the development of unilateral internal carotid artery stenosis. Biomed Mater Eng 24(1):491–499. https://doi.org/10.3233/BME-130835

    Article  PubMed  Google Scholar 

  3. Zhu G, Yuan Q, Yang J, Yeo JH (2015) The role of the circle of Willis in internal carotid artery stenosis and anatomical variations: a computational study based on a patient-specific three-dimensional model. Biomed Eng Online 14:107. https://doi.org/10.1186/s12938-015-0105-6

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arjal RK, Zhu T, Zhou Y (2014) The study of fetal-type posterior cerebral circulation on multislice CT angiography and its influence on cerebral ischemic strokes. Clin Imaging 38(3):221–225. https://doi.org/10.1016/j.clinimag.2014.01.007

    Article  PubMed  Google Scholar 

  5. Shaban A, Albright KC, Boehme AK, Martin-Schild S (2013) Circle of Willis variants: fetal PCA. Stroke Res Treat 2013:105937. https://doi.org/10.1155/2013/105937

    Article  PubMed  PubMed Central  Google Scholar 

  6. de Monye C, Dippel DW, Siepman TA, Dijkshoorn ML, Tanghe HL, van der Lugt A (2008) Is a fetal origin of the posterior cerebral artery a risk factor for TIA or ischemic stroke? A study with 16-multidetector-row CT angiography. J Neurol 255(2):239–245. https://doi.org/10.1007/s00415-008-0699-8

    Article  PubMed  Google Scholar 

  7. Kim GE, Cho YP, Lim SM (2002) The anatomy of the circle of Willis as a predictive factor for intra-operative cerebral ischemia (shunt need) during carotid endarterectomy. Neurol Res 24(3):237–240. https://doi.org/10.1179/016164102101199846

    Article  PubMed  Google Scholar 

  8. Montisci R, Sanfilippo R, Bura R, Branca C, Piga M, Saba L (2013) Status of the circle of Willis and intolerance to carotid cross-clamping during carotid endarterectomy. Eur J Vasc Endovasc Surg 45(2):107–112. https://doi.org/10.1016/j.ejvs.2012.11.012

    Article  PubMed  CAS  Google Scholar 

  9. Cucchiara B, Wolf RL, Nagae L, Zhang Q, Kasner S, Datta R, Aguirre GK, Detre JA (2013) Migraine with aura is associated with an incomplete circle of willis: results of a prospective observational study. PLoS ONE 8(7):e71007. https://doi.org/10.1371/journal.pone.0071007

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ryan DJ, Byrne S, Dunne R, Harmon M, Harbison J (2015) White matter disease and an incomplete circle of Willis. Int J Stroke 10(4):547–552. https://doi.org/10.1111/ijs.12042

    Article  PubMed  Google Scholar 

  11. Songsaeng D, Geibprasert S, Willinsky R, Tymianski M, TerBrugge KG, Krings T (2010) Impact of anatomical variations of the circle of Willis on the incidence of aneurysms and their recurrence rate following endovascular treatment. Clin Radiol 65(11):895–901. https://doi.org/10.1016/j.crad.2010.06.010

    Article  PubMed  CAS  Google Scholar 

  12. Li Q, Li J, Lv F, Li K, Luo T, Xie P (2011) A multidetector CT angiography study of variations in the circle of Willis in a Chinese population. J Clin Neurosci 18(3):379–383. https://doi.org/10.1016/j.jocn.2010.07.137

    Article  PubMed  Google Scholar 

  13. De Silva KR, Silva R, Gunasekera WS, Jayesekera RW (2009) Prevalence of typical circle of Willis and the variation in the anterior communicating artery: a study of a Sri Lankan population. Ann Indian Acad Neurol 12(3):157–161. https://doi.org/10.4103/0972-2327.56314

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maaly MAIA. (2011) Three dimensional magnetic resonance angiography of the circle of Willis: anatomical variations in general Egyptian population. Egypt J Radiol Nucl Med 42:405–412

    Article  Google Scholar 

  15. Nordon David GRJ, Orlando F (2012) Variations in the brain circulation: the circle of Willis. Braz J Morphol Sci 29:243–247

    Google Scholar 

  16. Riggs HE, Rupp C (1963) Variation in form of circle of Willis. The relation of the variations to collateral circulation: anatomic analysis. Arch Neurol 8:8–14

    Article  PubMed  CAS  Google Scholar 

  17. Kapoor K, Singh B, Dewan LI (2008) Variations in the configuration of the circle of Willis. Anat Sci Int 83(2):96–106. https://doi.org/10.1111/j.1447-073X.2007.00216.x

    Article  PubMed  Google Scholar 

  18. Bathala L, Mehndiratta MM, Sharma VK (2013) Transcranial doppler: technique and common findings (Part 1). Ann Indian Acad Neurol 16(2):174–179. https://doi.org/10.4103/0972-2327.112460

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brescianini S, Fagnani C, Toccaceli V, Medda E, Nistico L, D’Ippolito C, Alviti S, Arnofi A, Caffari B, Delfino D, Ferri M, Penna L, Salemi M, Sereni S, Serino L, Cotichini R, Stazi MA (2013) An update on the Italian Twin Register: advances in cohort recruitment, project building and network development. Twin Res Hum Genet 16(1):190–196. https://doi.org/10.1017/thg.2012.85

    Article  PubMed  Google Scholar 

  20. Littvay L, Metneki J, Tarnoki AD, Tarnoki DL (2013) The Hungarian Twin Registry. Twin Res Hum Genet 16(1):185–189. https://doi.org/10.1017/thg.2012.76

    Article  PubMed  Google Scholar 

  21. Witte JS, Carlin JB, Hopper JL (1999) Likelihood-based approach to estimating twin concordance for dichotomous traits. Genet Epidemiol 16 (3):290–304

    Article  PubMed  CAS  Google Scholar 

  22. Neale MC (1992) Methodology for genetic studies of twins and families. Kluwers Academic Publisher, Dordrecht

    Book  Google Scholar 

  23. Hoksbergen AW, Majoie CB, Hulsmans FJ, Legemate DA (2003) Assessment of the collateral function of the circle of Willis: three-dimensional time-of-flight MR angiography compared with transcranial color-coded duplex sonography. AJNR Am J Neuroradiol 24(3):456–462

    PubMed  Google Scholar 

  24. Li Z, Huo X, Zhang S, Lu J, Li C, Guo M, Fu R, He Z, Du X, Chen Z (2015) Selection of genes associated with variations in the Circle of Willis in gerbils using suppression subtractive hybridization. PLoS ONE 10(5):e0127355. https://doi.org/10.1371/journal.pone.0127355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Du XY, Zhu XD, Dong G, Lu J, Wang Y, Zeng L, Zhao TY, Ye HH, Li RS, Bai JY, Chen ZW (2011) Characteristics of circle of Willis variations in the mongolian gerbil and a newly established ischemia-prone gerbil group. ILAR J 52(1):E1-7

    Article  PubMed  Google Scholar 

  26. Luna RL, Kay VR, Ratsep MT, Khalaj K, Bidarimath M, Peterson N, Carmeliet P, Jin A, Croy BA (2016) Placental growth factor deficiency is associated with impaired cerebral vascular development in mice. Mol Hum Reprod 22(2):130–142. https://doi.org/10.1093/molehr/gav069

    Article  PubMed  CAS  Google Scholar 

  27. Jin ZN, Dong WT, Cai XW, Zhang Z, Zhang LT, Gao F, Kang XK, Li J, Wang HN, Gao NN, Ning XJ, Tu J, Li FT, Zhang J, Jiang YJ, Li NX, Yang SY, Zhang JN, Wang JH, Yang XY (2016) CTA characteristics of the circle of Willis and intracranial aneurysm in a Chinese crowd with family history of stroke. Biomed Res Int 2016:1743794. https://doi.org/10.1155/2016/1743794

  28. Shambal S, Grehl H, Zierz S, Lindner A (2003) Age dependence of Doppler parameters in the basal cerebral arteries evaluated by transcranial color-coded duplex sonography. Reference data from 290 volunteers. Fortschr Neurol Psychiatr 71(5):271–277. https://doi.org/10.1055/s-2003-39064

    Article  PubMed  CAS  Google Scholar 

  29. Tarnoki AD, Tarnoki DL, Giannoni MF, Baracchini C, Meneghetti G, Cardaioli G, Medda E, Stazi MA, Cotichini R, Fagnani C, Nistico L, Lucatelli P, Fanelli F, Berczi V, Garami Z, Littvay L, Schillaci G (2014) Heritability of cerebral arterial velocity and resistance. J Cardiovasc Med https://doi.org/10.2459/JCM.0000000000000230

    Article  Google Scholar 

  30. Sarkar S, Ghosh S, Ghosh SK, Collier A (2007) Role of transcranial Doppler ultrasonography in stroke. Postgrad Med J 83(985):683–689. https://doi.org/10.1136/pgmj.2007.058602

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bernardi L, Casucci G, Haider T, Brandstatter E, Pocecco E, Ehrenbourg I, Burtscher M (2008) Autonomic and cerebrovascular abnormalities in mild COPD are worsened by chronic smoking. Eur Respir J 32(6):1458–1465. https://doi.org/10.1183/09031936.00066807

    Article  PubMed  CAS  Google Scholar 

  32. Selim M, Jones R, Novak P, Zhao P, Novak V (2008) The effects of body mass index on cerebral blood flow velocity. Clin Auton Res 18(6):331–338. https://doi.org/10.1007/s10286-008-0490-z

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gleason CA, Iida H, Hotchkiss KJ, Northington FJ, Traystman RJ (1997) Newborn cerebrovascular responses after first trimester moderate maternal ethanol exposure in sheep. Pediatr Res 42(1):39–45. https://doi.org/10.1203/00006450-199707000-00007

    Article  PubMed  CAS  Google Scholar 

  34. Viski S, Orosz M, Czuriga-Kovacs KR, Magyar MT, Csiba L, Olah L (2016) The acute effects of alcohol on cerebral hemodynamic changes induced by the head-up tilt test in healthy subjects. J Neurol Sci 368:113–120. https://doi.org/10.1016/j.jns.2016.06.060

    Article  PubMed  CAS  Google Scholar 

  35. Fraineau S, Palii CG, Allan DS, Brand M (2015) Epigenetic regulation of endothelial-cell-mediated vascular repair. FEBS J 282(9):1605–1629. https://doi.org/10.1111/febs.13183

    Article  PubMed  CAS  Google Scholar 

  36. Hromadnikova I, Kotlabova K, Ivankova K, Vedmetskaya Y, Krofta L (2017) Profiling of cardiovascular and cerebrovascular disease associated microRNA expression in umbilical cord blood in gestational hypertension, preeclampsia and fetal growth restriction. Int J Cardiol 249:402–409. https://doi.org/10.1016/j.ijcard.2017.07.045

    Article  PubMed  Google Scholar 

  37. Czyz W, Morahan JM, Ebers GC, Ramagopalan SV (2012) Genetic, environmental and stochastic factors in monozygotic twin discordance with a focus on epigenetic differences. BMC Med 10:93. https://doi.org/10.1186/1741-7015-10-93

    Article  PubMed  PubMed Central  Google Scholar 

  38. Scher MS (2013) Normal and abnormal cerebrovascular development: gene-environment interactions during early life with later life consequences, Handb Clin Neurol, https://doi.org/10.1016/B978-0-444-52910-7.00021-0

    Article  PubMed  Google Scholar 

  39. Malamateniou C, Adams ME, Srinivasan L, Allsop JM, Counsell SJ, Cowan FM, Hajnal JV, Rutherford MA (2009) The anatomic variations of the circle of Willis in preterm-at-term and term-born infants: an MR angiography study at 3T. AJNR Am J Neuroradiol 30(10):1955–1962. https://doi.org/10.3174/ajnr.A1724

    Article  PubMed  CAS  Google Scholar 

  40. van Raamt AF, Mali WP, van Laar PJ, van der Graaf Y (2006) The fetal variant of the circle of Willis and its influence on the cerebral collateral circulation. Cerebrovasc Dis 22(4):217–224. https://doi.org/10.1159/000094007

    Article  PubMed  Google Scholar 

  41. van Seeters T, Hendrikse J, Biessels GJ, Velthuis BK, Mali WP, Kappelle LJ, van der Graaf Y, Group SS (2015) Completeness of the circle of Willis and risk of ischemic stroke in patients without cerebrovascular disease. Neuroradiology 57(12):1247–1251. https://doi.org/10.1007/s00234-015-1589-2

    Article  PubMed  PubMed Central  Google Scholar 

  42. Park JH, Kim JM, Roh JK (2007) Hypoplastic vertebral artery: frequency and associations with ischaemic stroke territory. J Neurol Neurosurg Psychiatry 78(9):954–958. https://doi.org/10.1136/jnnp.2006.105767

    Article  PubMed  Google Scholar 

  43. Zhang DP, Lu GF, Zhang JW, Zhang SL, Ma QK, Yin S (2017) Vertebral artery hypoplasia and posterior circulation infarction in patients with isolated vertigo with stroke risk factors. J Stroke Cerebrovasc Dis 26(2):295–300. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.09.020

    Article  PubMed  Google Scholar 

  44. Tarnoki AD, Fejer B, Tarnoki DL, Littvay L, Lucatelli P, Cirelli C, Fanelli F, Sacconi B, Fagnani C, Medda E, Farina F, Meneghetti G, Horvath T, Pucci G, Schillaci G, Stazi MA, Baracchini C (2017) Vertebral artery diameter and flow: nature or nurture. J Neuroimaging 27(5):499–504. https://doi.org/10.1111/jon.12434

    Article  PubMed  Google Scholar 

  45. Yang D, Cabral D, Gaspard EN, Lipton RB, Rundek T, Derby CA (2016) Cerebral hemodynamics in the elderly: a transcranial Doppler study in the Einstein Aging Study Cohort. J Ultrasound Med 35(9):1907–1914. https://doi.org/10.7863/ultra.15.10040

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mitchell GF, van Buchem MA, Sigurdsson S, Gotal JD, Jonsdottir MK, Kjartansson O, Garcia M, Aspelund T, Harris TB, Gudnason V, Launer LJ (2011) Arterial stiffness, pressure and flow pulsatility and brain structure and function: the Age, Gene/Environment Susceptibility–Reykjavik study. Brain 134(Pt 11):3398–3407. https://doi.org/10.1093/brain/awr253

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tarumi T, Ayaz Khan M, Liu J, Tseng BY, Parker R, Riley J, Tinajero C, Zhang R (2014) Cerebral hemodynamics in normal aging: central artery stiffness, wave reflection, and pressure pulsatility. J Cereb Blood Flow Metab 34(6):971–978. https://doi.org/10.1038/jcbfm.2014.44

    Article  PubMed  PubMed Central  Google Scholar 

  48. Carallo C, Irace C, De Franceschi MS, Coppoletta F, Tiriolo R, Scicchitano C, Scavelli F, Gnasso A (2011) The effect of aging on blood and plasma viscosity. An 11.6 years follow-up study. Clin Hemorheol Microcirc 47(1):67–74. https://doi.org/10.3233/CH-2010-1367

    Article  PubMed  CAS  Google Scholar 

  49. Loncar G, Bozic B, Lepic T, Dimkovic S, Prodanovic N, Radojicic Z, Cvorovic V, Markovic N, Brajovic M, Despotovic N, Putnikovic B, Popovic-Brkic V (2011) Relationship of reduced cerebral blood flow and heart failure severity in elderly males. Aging Male 14(1):59–65. https://doi.org/10.3109/13685538.2010.511326

    Article  PubMed  Google Scholar 

  50. Kusunoki K, Oka Y, Saito M, Sadamoto K, Sakaki S, Miki H, Nagasawa K (1999) Changes in visibility of intracranial arteries on MRA with normal ageing. Neuroradiology 41(11):813–819

    Article  PubMed  CAS  Google Scholar 

  51. Brunser AM, Lavados PM, Hoppe A, Lopez J, Valenzuela M, Rivas R (2009) Accuracy of transcranial Doppler compared with CT angiography in diagnosing arterial obstructions in acute ischemic strokes. Stroke 40(6):2037–2041. https://doi.org/10.1161/STROKEAHA.108.542704

    Article  PubMed  Google Scholar 

  52. Baumgartner RW, Mattle HP, Aaslid R (1995) Transcranial color-coded duplex sonography, magnetic resonance angiography, and computed tomography angiography: methods, applications, advantages, and limitations. J Clin Ultrasound 23(2):89–111

    Article  PubMed  CAS  Google Scholar 

  53. Baumgartner RW (ed), (2006). Handbook on Neurovascular Ultrasound Karger, Basel, pp 110–112

    Google Scholar 

  54. Vuillier F, Medeiros E, Tatu L, Cattin F, Bonneville JF, Moulin T (2008) Assessment of the course and division patterns of the middle cerebral artery M1 segment. Transcranial power Doppler compared with 3D time-of-flight magnetic resonance angiography at 3 T. Cerebrovasc Dis 26(3):259–265. https://doi.org/10.1159/000147453

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The research was supported by Balassi Institute, Hungarian Scholarship Office and Italian Cultural Institute, Semmelweis University Directorate of International Relations and University of Padua. The auhors thank dr. Philip Auyang for the help with English language editing. For request, the article’s supporting data and materials can be accessed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bianka Forgó.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 26 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forgó, B., Tárnoki, Á.D., Tárnoki, D.L. et al. Investigation of circle of Willis variants and hemodynamic parameters in twins using transcranial color-coded Doppler sonography. Int J Cardiovasc Imaging 34, 1419–1427 (2018). https://doi.org/10.1007/s10554-018-1359-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-018-1359-4

Keywords

Navigation