Advertisement

Imaging the myocardial ischemic cascade

  • Arthur E. Stillman
  • Matthijs Oudkerk
  • David A. Bluemke
  • Menko Jan de Boer
  • Jens Bremerich
  • Ernest V. Garcia
  • Matthias Gutberlet
  • Pim van der Harst
  • W. Gregory Hundley
  • Michael Jerosch-Herold
  • Dirkjan Kuijpers
  • Raymond Y. Kwong
  • Eike Nagel
  • Stamatios Lerakis
  • John Oshinski
  • Jean-François Paul
  • Riemer H. J. A. Slart
  • Vinod Thourani
  • Rozemarijn Vliegenthart
  • Bernd J. Wintersperger
Review Paper

Abstract

Non-invasive imaging plays a growing role in the diagnosis and management of ischemic heart disease from its earliest manifestations of endothelial dysfunction to myocardial infarction along the myocardial ischemic cascade. Experts representing the North American Society for Cardiovascular Imaging and the European Society of Cardiac Radiology have worked together to organize the role of non-invasive imaging along the framework of the ischemic cascade. The current status of non-invasive imaging for ischemic heart disease is reviewed along with the role of imaging for guiding surgical planning. The issue of cost effectiveness is also considered. Preclinical disease is primarily assessed through the coronary artery calcium score and used for risk assessment. Once the patient becomes symptomatic, other imaging tests including echocardiography, CCTA, SPECT, PET and CMR may be useful. CCTA appears to be a cost-effective gatekeeper. Post infarction CMR and PET are the preferred modalities. Imaging is increasingly used for surgical planning of patients who may require coronary artery bypass.

Keyword

Coronary artery disease Ischemic heart disease Cardiac imaging 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

References

  1. 1.
    Nesto RW, Kowalchuk GJ (1987) The ischemic cascade: temporal sequence of hemodynamic, electrocardiographic and symptomatic expressions of ischemia. Am J Cardiol 59(7):23C–30CGoogle Scholar
  2. 2.
    Johnson NP, Gould KL (2005) Clinical evaluation of a new concept: resting myocardial perfusion heterogeneity quantified by markovian analysis of PET identifies coronary microvascular dysfunction and early atherosclerosis in 1034 subjects. J Nucl Med 46(9):1427–1437PubMedGoogle Scholar
  3. 3.
    Wang L, Jerosch-Herold M, Jacobs DR Jr, Shahar E, Folsom AR (2006) Coronary risk factors and myocardial perfusion in asymptomatic adults: the Multi-Ethnic Study of Atherosclerosis (MESA). J Am Coll Cardiol 47(3):565–572PubMedGoogle Scholar
  4. 4.
    Oudkerk M, Stillman AE, Halliburton SS, Kalender WA, Mohlenkamp S, McCollough CH et al (2008) Coronary artery calcium screening: current status and recommendations from the European Society of Cardiac Radiology and North American Society for Cardiovascular Imaging. Int J Cardiovasc Imaging 24(6):645–671PubMedPubMedCentralGoogle Scholar
  5. 5.
    McClelland RL, Jorgensen NW, Budoff M, Blaha MJ, Post WS, Kronmal RA et al (2015) 10-year coronary heart disease risk prediction using coronary artery calcium and traditional risk factors: derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) with validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study). J Am Coll Cardiol 66(15):1643–1653PubMedPubMedCentralGoogle Scholar
  6. 6.
    Nasir K, Bittencourt MS, Blaha MJ, Blankstein R, Agatson AS, Rivera JJ et al (2015) Implications of coronary artery calcium testing among statin candidates according to American College of Cardiology/American Heart Association Cholesterol Management Guidelines: MESA (Multi-Ethnic Study of Atherosclerosis). J Am Coll Cardiol 66(15):1657–1668PubMedGoogle Scholar
  7. 7.
    Rodriguez K, Kwan AC, Lai S, Lima JA, Vigneault D, Sandfort V et al (2015) Coronary plaque burden at coronary CT angiography in asymptomatic men and women. Radiology 277(1):73–80PubMedPubMedCentralGoogle Scholar
  8. 8.
    Sandfort V, Lima JA, Bluemke DA (2015) Noninvasive imaging of atherosclerotic plaque progression: status of coronary computed tomography angiography. Circ Cardiovasc Imaging 8(7):e003316PubMedGoogle Scholar
  9. 9.
    Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH et al (2014) 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet 383(9918):705–713PubMedGoogle Scholar
  10. 10.
    Dweck MR, Puntman V, Vesey AT, Fayad ZA, Nagel E (2016) MR imaging of coronary arteries and plaques. JACC Cardiovasc Imaging 9(3):306–316PubMedGoogle Scholar
  11. 11.
    Takx RA, Blomberg BA, El Aidi H, Habets J, de Jong PA, Nagel E et al. (2015) Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging 8(1):e002666PubMedGoogle Scholar
  12. 12.
    Schwitter J, Wacker CM, Wilke N, Al-Saadi N, Sauer E, Huettle K et al (2013) MR-IMPACT II: magnetic resonance imaging for myocardial perfusion assessment in coronary artery disease trial: perfusion-cardiac magnetic resonance vs. single-photon emission computed tomography for the detection of coronary artery disease: a comparative multicentre, multivendor trial. Eur Heart J 34(10):775–781PubMedGoogle Scholar
  13. 13.
    Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E et al (2012) Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol 59(19):1719–1728PubMedGoogle Scholar
  14. 14.
    Kramer CM, Barkhausen J, Flamm SD, Kim RJ, Nagel E (2013) Society for cardiovascular magnetic resonance board of trustees task force on standardized P. standardized cardiovascular magnetic resonance (CMR) protocols 2013 update. J Cardiovasc Magn Reson 15:91PubMedPubMedCentralGoogle Scholar
  15. 15.
    Hendel RC, Friedrich M, Schultz-Menger J, Zemmerich C, Bengel F, Berman DS et al. (2017) Cardiovascular magnetic resonance first-pass perfusion for suspected inducible myocardial ischemia. JACC Cardiovasc Imaging 9(1):1338–1348Google Scholar
  16. 16.
    Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG et al (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: society for cardiovascular magnetic resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15:35PubMedPubMedCentralGoogle Scholar
  17. 17.
    Jerosch-Herold M (2010) Quantification of myocardial perfusion by cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:57PubMedPubMedCentralGoogle Scholar
  18. 18.
    Chiribiri A, Schuster A, Ishida M, Hautvast G, Zarinabad N, Morton G et al (2013) Perfusion phantom: an efficient and reproducible method to simulate myocardial first-pass perfusion measurements with cardiovascular magnetic resonance. Magn Reson Med 69(3):698–707PubMedGoogle Scholar
  19. 19.
    Hsu LY, Groves DW, Aletras AH, Kellman P, Arai AE (2012) A quantitative pixel-wise measurement of myocardial blood flow by contrast-enhanced first-pass CMR perfusion imaging: microsphere validation in dogs and feasibility study in humans. JACC Cardiovasc Imaging 5(2):154–166PubMedPubMedCentralGoogle Scholar
  20. 20.
    Shaw LJ, Berman DS, Picard MH, Friedrich MG, Kwong RY, Stone GW et al (2014) Comparative definitions for moderate-severe ischemia in stress nuclear, echocardiography, and magnetic resonance imaging. JACC Cardiovasc Imaging 7(6):593–604PubMedPubMedCentralGoogle Scholar
  21. 21.
    Arnold JR, Karamitsos TD, Bhamra-Ariza P, Francis JM, Searle N, Robson MD et al (2012) Myocardial oxygenation in coronary artery disease: insights from blood oxygen level-dependent magnetic resonance imaging at 3 T. J Am Coll Cardiol 59(22):1954–1964PubMedGoogle Scholar
  22. 22.
    Pellikka PA, Nagueh SF, Elhendy AA, Kuehl CA, Sawada SG (2007) American Society of Echocardiography recommendations for performance, interpretation, and application of stress echocardiography. J Am Soc Echocardiogr 20(9):1021–1041PubMedGoogle Scholar
  23. 23.
    Hoit BD (2011) Strain and strain rate echocardiography and coronary artery disease. Circ Cardiovasc Imaging 4(2):179–190PubMedGoogle Scholar
  24. 24.
    Oxborough D, Batterham AM, Shave R, Artis N, Birch KM, Whyte G et al (2009) Interpretation of two-dimensional and tissue Doppler-derived strain (epsilon) and strain rate data: is there a need to normalize for individual variability in left ventricular morphology? Eur J Echocardiogr 10(5):677–682PubMedGoogle Scholar
  25. 25.
    Choi JO, Cho SW, Song YB, Cho SJ, Song BG, Lee SC et al (2009) Longitudinal 2D strain at rest predicts the presence of left main and three vessel coronary artery disease in patients without regional wall motion abnormality. Eur J Echocardiogr 10(5):695–701PubMedGoogle Scholar
  26. 26.
    Biering-Sorensen T, Hoffmann S, Mogelvang R, Zeeberg Iversen A, Galatius S, Fritz-Hansen T et al (2014) Myocardial strain analysis by 2-dimensional speckle tracking echocardiography improves diagnostics of coronary artery stenosis in stable angina pectoris. Circ Cardiovasc Imaging 7(1):58–65PubMedGoogle Scholar
  27. 27.
    Voigt JU, Exner B, Schmiedehausen K, Huchzermeyer C, Reulbach U, Nixdorff U et al (2003) Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation 107(16):2120–2126PubMedGoogle Scholar
  28. 28.
    Porter TR, Xie F (2010) Myocardial perfusion imaging with contrast ultrasound. JACC Cardiovasc Imaging 3(2):176–187PubMedGoogle Scholar
  29. 29.
    Porter TR, Li S, Kricsfeld D, Armbruster R (1997) Detection of myocardial perfusion in multiple echocardiographic windows with one intravenous injection of microbubbles using transient response second harmonic imaging. J Am Coll Cardiol 29:791–799PubMedGoogle Scholar
  30. 30.
    Heinle S, Noblin J, Goree-Best P et al (2000) Assessment of myocardial perfusion by harmonic power Doppler im- aging at rest and during adenosine stress: comparison with (99 m) Tc- sestamibi SPECT imaging. Circulation 102:55–60PubMedGoogle Scholar
  31. 31.
    Kaul S, Senior R, Dittrich H, Raval U, Khattar R, Lahiri A (1997) Detection of coronary artery disease with myocardial contrast echocardiography: comparison with 99mTc-sestamibi single-photon emission computed tomography. Circulation 96:785–792PubMedGoogle Scholar
  32. 32.
    Hacker M, Hoyer H, Uebleis C et al (2008) Quantitative assessment of cardiac allograft vasculopathy by real-time myocardial contrast echocardiography: a comparison with conventional echocardiographic analyses and [Tc99m]- sestamibi SPECT. Eur J Echocardiogr 9:494–500PubMedGoogle Scholar
  33. 33.
    Heinle SK, Noblin J, Goree-Best P, Mello A, Ravad G, Mull S et al (2000) Assessment of myocardial perfusion by harmonic power Doppler imaging at rest and during adenosine stress: comparison with (99 m)Tc-sestamibi SPECT imaging. Circulation 102(1):55–60PubMedGoogle Scholar
  34. 34.
    Janardhanan R, Senior R (2004) Accuracy of dipyridamole myocardial contrast echocardiography for the detection of residual stenosis of the infarct-related artery and multivessel disease early after acute myocardial infarction. J Am Coll Cardiol 43:2247–2252PubMedGoogle Scholar
  35. 35.
    Wu J, Barton D, Xie F, O’Leary E, Steuter J, Pavlides G et al. (2016) Comparison of fractional flow reserve assessment with demand stress myocardial contrast echocardiography in angiographically intermediate coronary stenoses. Circ Cardiovasc Imaging. 9(8):e004129PubMedGoogle Scholar
  36. 36.
    Kern MJ, Seto AH (2016) Myocardial contrast stress echo versus fractional flow reserve: a fair fight among ischemic tests?. Circ Cardiovasc Imaging 9(8):e005327PubMedGoogle Scholar
  37. 37.
    Greenwood JP, Herzog BA, Brown JM, Everett CC, Plein S (2016) Cardiovascular magnetic resonance and single-photon emission computed tomography in suspected coronary heart disease. Ann Intern Med 165(11):830–831PubMedGoogle Scholar
  38. 38.
    Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B et al (2015) Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med 372(14):1291–1300PubMedPubMedCentralGoogle Scholar
  39. 39.
    Scot-Heart Investigators (2015) CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet 385(9985):2383–2391Google Scholar
  40. 40.
    Ruzsics B, Lee H, Zwerner PL, Gebregziabher M, Costello P, Schoepf UJ (2008) Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol 18(11):2414–2424PubMedGoogle Scholar
  41. 41.
    Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA et al (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52(25):2135–2144PubMedGoogle Scholar
  42. 42.
    Kachenoura N, Gaspar T, Lodato JA, Bardo DM, Newby B, Gips S et al (2009) Combined assessment of coronary anatomy and myocardial perfusion using multidetector computed tomography for the evaluation of coronary artery disease. Am J Cardiol 103(11):1487–1494PubMedGoogle Scholar
  43. 43.
    Choe YH, Choo KS, Jeon ES, Gwon HC, Choi JH, Park JE (2008) Comparison of MDCT and MRI in the detection and sizing of acute and chronic myocardial infarcts. Eur J Radiol 66(2):292–299PubMedGoogle Scholar
  44. 44.
    Nieman K, Cury RC, Ferencik M, Nomura CH, Abbara S, Hoffmann U et al (2006) Differentiation of recent and chronic myocardial infarction by cardiac computed tomography. Am J Cardiol 98(3):303–308PubMedGoogle Scholar
  45. 45.
    Nikolaou K, Knez A, Sagmeister S, Wintersperger BJ, Boekstegers P, Steinbeck G et al (2004) Assessment of myocardial infarctions using multidetector-row computed tomography. J Comput Assist Tomogr 28(2):286–292PubMedGoogle Scholar
  46. 46.
    Nikolaou K, Sanz J, Poon M, Wintersperger BJ, Ohnesorge B, Rius T et al (2005) Assessment of myocardial perfusion and viability from routine contrast-enhanced 16-detector-row computed tomography of the heart: preliminary results. Eur Radiol 15(5):864–871PubMedGoogle Scholar
  47. 47.
    Blankstein R, Okada DR, Rocha-Filho JA, Rybicki FJ, Brady TJ, Cury RC (2009) Cardiac myocardial perfusion imaging using dual source computed tomography. Int J Cardiovasc Imaging 25(2):209Google Scholar
  48. 48.
    Chan-Dewar F, Oxborough D, Shave R, Gregson W, Whyte G, Noakes T et al (2010) Evidence of increased electro-mechanical delay in the left and right ventricle after prolonged exercise. Eur J Appl Physiol 108(3):581–587PubMedGoogle Scholar
  49. 49.
    Bettencourt N, Chiribiri A, Schuster A, Ferreira N, Sampaio F, Pires-Morais G et al (2013) Direct comparison of cardiac magnetic resonance and multidetector computed tomography stress-rest perfusion imaging for detection of coronary artery disease. J Am Coll Cardiol 61(10):1099–1107PubMedGoogle Scholar
  50. 50.
    Rochitte CE, George RT, Chen MY, Arbab-Zadeh A, Dewey M, Miller JM et al (2014) Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the CORE320 study. Eur Heart J 35(17):1120–1130PubMedGoogle Scholar
  51. 51.
    Nakazato R, Shalev A, Doh JH, Koo BK, Gransar H, Gomez MJ et al (2013) Aggregate plaque volume by coronary computed tomography angiography is superior and incremental to luminal narrowing for diagnosis of ischemic lesions of intermediate stenosis severity. J Am Coll Cardiol 62(5):460–467PubMedGoogle Scholar
  52. 52.
    Wong DT, Ko BS, Cameron JD, Nerlekar N, Leung MC, Malaiapan Y et al (2013) Transluminal attenuation gradient in coronary computed tomography angiography is a novel noninvasive approach to the identification of functionally significant coronary artery stenosis: a comparison with fractional flow reserve. J Am Coll Cardiol 61(12):1271–1279PubMedGoogle Scholar
  53. 53.
    Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS et al (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58(19):1989–1997PubMedGoogle Scholar
  54. 54.
    Ko BS, Cameron JD, Leung M, Meredith IT, Leong DP, Antonis PR et al (2012) Combined CT coronary angiography and stress myocardial perfusion imaging for hemodynamically significant stenoses in patients with suspected coronary artery disease: a comparison with fractional flow reserve. JACC Cardiovasc Imaging 5(11):1097–1111PubMedGoogle Scholar
  55. 55.
    Ko BS, Cameron JD, Meredith IT, Leung M, Antonis PR, Nasis A et al (2012) Computed tomography stress myocardial perfusion imaging in patients considered for revascularization: a comparison with fractional flow reserve. Eur Heart J 33(1):67–77PubMedGoogle Scholar
  56. 56.
    Nakazato R, Park HB, Berman DS, Gransar H, Koo BK, Erglis A et al (2013) Noninvasive fractional flow reserve derived from computed tomography angiography for coronary lesions of intermediate stenosis severity: results from the DeFACTO study. Circ Cardiovasc Imaging 6(6):881–889PubMedGoogle Scholar
  57. 57.
    Douglas PS, Pontone G, Hlatky MA, Patel MR, Norgaard BL, Byrne RA et al (2015) Clinical outcomes of fractional flow reserve by computed tomographic angiography-guided diagnostic strategies vs. usual care in patients with suspected coronary artery disease: the prospective longitudinal trial of FFR(CT): outcome and resource impacts study. Eur Heart J 36(47):3359–3367PubMedPubMedCentralGoogle Scholar
  58. 58.
    Danad I, Szymonifka J, Twisk JWR, Norgaard BL, Zarins CK, Knaapen P et al (2017) Diagnostic performance of cardiac imaging methods to diagnose ischaemia-causing coronary artery disease when directly compared with fractional flow reserve as a reference standard: a meta-analysis. Eur Heart J 38(13):991–998PubMedGoogle Scholar
  59. 59.
    Heller GV, Stowers SA, Hendel RC, Herman SD, Daher E, Ahlberg AW et al (1998) Clinical value of acute rest technetium-99m tetrofosmin tomographic myocardial perfusion imaging in patients with acute chest pain and nondiagnostic electrocardiograms. J Am Coll Cardiol 31(5):1011–1017PubMedGoogle Scholar
  60. 60.
    Hilton TC, Thompson RC, Williams HJ, Saylors R, Fulmer H, Stowers SA (1994) Technetium-99m sestamibi myocardial perfusion imaging in the emergency room evaluation of chest pain. J Am Coll Cardiol 23(5):1016–1022PubMedGoogle Scholar
  61. 61.
    Kontos MC, Jesse RL, Anderson FP, Schmidt KL, Ornato JP, Tatum JL (1999) Comparison of myocardial perfusion imaging and cardiac troponin I in patients admitted to the emergency department with chest pain. Circulation 99(16):2073–2078PubMedGoogle Scholar
  62. 62.
    Kontos MC, Jesse RL, Schmidt KL, Ornato JP, Tatum JL (1997) Value of acute rest sestamibi perfusion imaging for evaluation of patients admitted to the emergency department with chest pain. J Am Coll Cardiol 30(4):976–982PubMedGoogle Scholar
  63. 63.
    Tatum JL, Jesse RL, Kontos MC, Nicholson CS, Schmidt KL, Roberts CS et al (1997) Comprehensive strategy for the evaluation and triage of the chest pain patient. Ann Emerg Med 29(1):116–125PubMedGoogle Scholar
  64. 64.
    Varetto T, Cantalupi D, Altieri A, Orlandi C (1993) Emergency room technetium-99m sestamibi imaging to rule out acute myocardial ischemic events in patients with nondiagnostic electrocardiograms. J Am Coll Cardiol 22(7):1804–1808PubMedGoogle Scholar
  65. 65.
    Allman KC, Shaw LJ, Hachamovitch R, Udelson JE (2002) Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 39(7):1151–1158PubMedGoogle Scholar
  66. 66.
    Udelson JE, Beshansky JR, Ballin DS, Feldman JA, Griffith JL, Handler J et al (2002) Myocardial perfusion imaging for evaluation and triage of patients with suspected acute cardiac ischemia: a randomized controlled trial. JAMA 288(21):2693–2700PubMedGoogle Scholar
  67. 67.
    Heller GV, Bateman TM, Johnson LL, Cullom SJ, Case JA, Galt JR et al (2004) Clinical value of attenuation correction in stress-only Tc-99m sestamibi SPECT imaging. J Nucl Cardiol 11(3):273–281PubMedGoogle Scholar
  68. 68.
    Berman DS, Kang X, Nishina H, Slomka PJ, Shaw LJ, Hayes SW et al (2006) Diagnostic accuracy of gated Tc-99m sestamibi stress myocardial perfusion SPECT with combined supine and prone acquisitions to detect coronary artery disease in obese and nonobese patients. J Nucl Cardiol 13(2):191–201PubMedGoogle Scholar
  69. 69.
    Wahba FF, Lamb HJ, Bax JJ, Dibbets-Schneider P, Bavelaar-Croon CD, Zwinderman AH et al (2001) Assessment of regional myocardial wall motion and thickening by gated 99Tcm-tetrofosmin SPECT: a comparison with magnetic resonance imaging. Nucl Med Commun 22(6):663–671PubMedGoogle Scholar
  70. 70.
    Gould KL, Yoshida K, Hess MJ, Haynie M, Mullani N, Smalling RW (1991) Myocardial metabolism of fluorodeoxyglucose compared to cell membrane integrity for the potassium analogue rubidium-82 for assessing infarct size in man by PET. J Nucl Med 32(1):1–9PubMedGoogle Scholar
  71. 71.
    Ghesani M, Depuey EG, Rozanski A (2005) Role of F-18 FDG positron emission tomography (PET) in the assessment of myocardial viability. Echocardiography 22(2):165–177PubMedGoogle Scholar
  72. 72.
    Packard RR, Huang SC, Dahlbom M, Czernin J, Maddahi J (2014) Absolute quantitation of myocardial blood flow in human subjects with or without myocardial ischemia using dynamic flurpiridaz F 18 PET. J Nucl Med 55(9):1438–1444PubMedPubMedCentralGoogle Scholar
  73. 73.
    Bateman TM, Heller GV, McGhie AI, Friedman JD, Case JA, Bryngelson JR et al (2006) Diagnostic accuracy of rest/stress ECG-gated Rb-82 myocardial perfusion PET: comparison with ECG-gated Tc-99m sestamibi SPECT. J Nucl Cardiol 13(1):24–33PubMedGoogle Scholar
  74. 74.
    Stillman AE, Oudkerk M, Bluemke D, Bremerich J, Esteves FP, Garcia EV et al (2011) Assessment of acute myocardial infarction: current status and recommendations from the North American society for Cardiovascular Imaging and the European Society of Cardiac Radiology. Int J Cardiovasc Imaging 27(1):7–24PubMedGoogle Scholar
  75. 75.
    Kwong RY, Schussheim AE, Rekhraj S, Aletras AH, Geller N, Davis J et al (2003) Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation 107(4):531–537PubMedGoogle Scholar
  76. 76.
    Cury RC, Shash K, Nagurney JT, Rosito G, Shapiro MD, Nomura CH et al (2008) Cardiac magnetic resonance with T2-weighted imaging improves detection of patients with acute coronary syndrome in the emergency department. Circulation 118(8):837–844PubMedGoogle Scholar
  77. 77.
    Plein S, Greenwood JP, Ridgway JP, Cranny G, Ball SG, Sivananthan MU (2004) Assessment of non-ST-segment elevation acute coronary syndromes with cardiac magnetic resonance imaging. J Am Coll Cardiol 44(11):2173–2181PubMedGoogle Scholar
  78. 78.
    Ingkanisorn WP, Kwong RY, Bohme NS, Geller NL, Rhoads KL, Dyke CK et al (2006) Prognosis of negative adenosine stress magnetic resonance in patients presenting to an emergency department with chest pain. J Am Coll Cardiol 47(7):1427–1432PubMedGoogle Scholar
  79. 79.
    Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP et al (2012) Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 14:42PubMedPubMedCentralGoogle Scholar
  80. 80.
    Ugander M, Bagi PS, Oki AJ, Chen B, Hsu LY, Aletras AH et al (2012) Myocardial edema as detected by pre-contrast T1 and T2 CMR delineates area at risk associated with acute myocardial infarction. JACC Cardiovasc Imaging 5(6):596–603PubMedPubMedCentralGoogle Scholar
  81. 81.
    Croisille P, Kim HW, Kim RJ (2012) Controversies in cardiovascular MR imaging: T2-weighted imaging should not be used to delineate the area at risk in ischemic myocardial injury. Radiology 265(1):12–22PubMedGoogle Scholar
  82. 82.
    Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD et al. (2012) Third universal definition of myocardial infarction. Circulation 2012:2020–2035Google Scholar
  83. 83.
    Bountioukos M, Elhendy A, van Domburg RT, Schinkel AF, Bax JJ, Krenning BJ et al (2004) Prognostic value of dobutamine stress echocardiography in patients with previous coronary revascularisation. Heart 90(9):1031–1035PubMedPubMedCentralGoogle Scholar
  84. 84.
    Douglas PS, Khandheria B, Stainback RF, Weissman NJ, Peterson ED, Hendel RC et al (2008) ACCF/ASE/ACEP/AHA/ASNC/SCAI/SCCT/SCMR 2008 Appropriateness Criteria for Stress Echocardiography. A report of the American College of Cardiology Foundation Appropriateness Criteria Task Force, American Society of Echocardiography, American College of Emergency Physicians., American Heart Association, American Society of Nuclear Cardiology, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, and Society for Cardiovascular Magnetic Resonance endorsed by the Heart Rhythm Society and the Society of Critical Care Medicine. Catheter Cardiovasc Interv 71(5):E1–E19Google Scholar
  85. 85.
    Fishbein MC, Maclean D, Maroko PR (1978) The histopathologic evolution of myocardial infarction. Chest 73(6):843–849PubMedGoogle Scholar
  86. 86.
    Mahrholdt H, Wagner A, Judd RM, Sechtem U (2002) Assessment of myocardial viability by cardiovascular magnetic resonance imaging. Eur Heart J 23(8):602–619PubMedGoogle Scholar
  87. 87.
    Jugdutt BI, Amy RW (1986) Healing after myocardial infarction in the dog: changes in infarct hydroxyproline and topography. J Am Coll Cardiol 7(1):91–102PubMedGoogle Scholar
  88. 88.
    Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM et al (2001) An improved MR imaging technique for the visualization of myocardial infarction. Radiology 218(1):215–223PubMedGoogle Scholar
  89. 89.
    Wagner M, Schilling R, Doeblin P, Huppertz A, Luhur R, Schwenke C et al (2013) Macrocyclic contrast agents for magnetic resonance imaging of chronic myocardial infarction: intraindividual comparison of gadobutrol and gadoterate meglumine. Eur Radiol 23(1):108–114PubMedGoogle Scholar
  90. 90.
    Wildgruber M, Stadlbauer T, Rasper M, Hapfelmeier A, Zelger O, Eckstein H-H et al. (2014) Single-dose gadobutrol in comparison with single-dose gadobenate dimeglumine for magnetic resonance imaging of chronic myocardial infarction at 3 T. Invest Radiol 49(11):728PubMedPubMedCentralGoogle Scholar
  91. 91.
    Roujol S, Weingartner S, Foppa M, Chow K, Kawaji K, Ngo LH et al (2014) Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology 272(3):683–689PubMedPubMedCentralGoogle Scholar
  92. 92.
    Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O et al (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100(19):1992–2002PubMedGoogle Scholar
  93. 93.
    Kim RJ, Albert TSE, Wible JH, Elliott MD, Allen JC, Lee JC et al (2008) Performance of delayed-enhancement magnetic resonance imaging with gadoversetamide contrast for the detection and assessment of myocardial infarction: an international, multicenter, double-blinded, randomized trial. Circulation 117(5):629–637PubMedGoogle Scholar
  94. 94.
    Ricciardi MJ, Wu E, Davidson CJ, Choi KM, Klocke FJ, Bonow RO et al (2001) Visualization of discrete microinfarction after percutaneous coronary intervention associated with mild creatine kinase-MB elevation. Circulation 103(23):2780–2783PubMedGoogle Scholar
  95. 95.
    Klein C, Nekolla SG, Bengel FM, Momose M, Sammer A, Haas F et al (2002) Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 105(2):162–167PubMedGoogle Scholar
  96. 96.
    Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M et al (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361(9355):374–379PubMedGoogle Scholar
  97. 97.
    Choi CJ, Haji-Momenian S, Dimaria JM, Epstein FH, Bove CM, Rogers WJ et al (2004) Infarct involution and improved function during healing of acute myocardial infarction: the role of microvascular obstruction. J Cardiovasc Magn Reson 6(4):917–925PubMedGoogle Scholar
  98. 98.
    Engelmann MG, Theiss HD, Hennig-Theiss C, Huber A, Wintersperger BJ, Werle-Ruedinger A-E et al (2006) Autologous bone marrow stem cell mobilization induced by granulocyte colony-stimulating factor after subacute ST-segment elevation myocardial infarction undergoing late revascularization: final results from the G-CSF-STEMI (Granulocyte Colony-Stimulating Factor ST-Segment Elevation Myocardial Infarction) trial. J Am Coll Cardiol 48(8):1712–1721PubMedGoogle Scholar
  99. 99.
    Ganame J, Messalli G, Masci PG, Dymarkowski S, Abbasi K, Van de Werf F et al (2011) Time course of infarct healing and left ventricular remodelling in patients with reperfused ST segment elevation myocardial infarction using comprehensive magnetic resonance imaging. Eur Radiol 21(4):693–701PubMedGoogle Scholar
  100. 100.
    Lund GK, Stork A, Muellerleile K, Barmeyer AA, Bansmann MP, Knefel M et al (2007) Prediction of left ventricular remodeling and analysis of infarct resorption in patients with reperfused myocardial infarcts by using contrast-enhanced MR imaging. Radiology 245(1):95–102PubMedGoogle Scholar
  101. 101.
    Masci PG, Dymarkowski S, Rademakers FE, Bogaert J (2009) Determination of regional ejection fraction in patients with myocardial infarction by using merged late gadolinium enhancement and cine MR: feasibility study. Radiology 250(1):50–60PubMedGoogle Scholar
  102. 102.
    Mather AN, Fairbairn TA, Artis NJ, Greenwood JP, Plein S (2011) Timing of cardiovascular MR imaging after acute myocardial infarction: effect on estimates of infarct characteristics and prediction of late ventricular remodeling. Radiology 261(1):116–126PubMedPubMedCentralGoogle Scholar
  103. 103.
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O et al (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453PubMedGoogle Scholar
  104. 104.
    Schvartzman PR, Srichai MB, Grimm RA, Obuchowski NA, Hammer DF, McCarthy PM et al (2003) Nonstress delayed-enhancement magnetic resonance imaging of the myocardium predicts improvement of function after revascularization for chronic ischemic heart disease with left ventricular dysfunction. Am Heart J 146(3):535–541PubMedGoogle Scholar
  105. 105.
    Kelle S, Roes SD, Klein C, Kokocinski T, de Roos A, Fleck E et al (2009) Prognostic value of myocardial infarct size and contractile reserve using magnetic resonance imaging. J Am Coll Cardiol 54(19):1770–1777PubMedGoogle Scholar
  106. 106.
    Pegg TJ, Selvanayagam JB, Jennifer J, Francis JM, Karamitsos TD, Dall’Armellina E et al (2010) Prediction of global left ventricular functional recovery in patients with heart failure undergoing surgical revascularisation, based on late gadolinium enhancement cardiovascular magnetic resonance. J Cardiovasc Magn Reson 12:56PubMedPubMedCentralGoogle Scholar
  107. 107.
    Bondarenko O, Beek AM, Twisk JW, Visser CA, van Rossum AC (2008) Time course of functional recovery after revascularization of hibernating myocardium: a contrast-enhanced cardiovascular magnetic resonance study. Eur Heart J 29(16):2000–2005PubMedGoogle Scholar
  108. 108.
    El Aidi H, Adams A, Moons KG, Den Ruijter HM, Mali WP, Doevendans PA et al (2014) Cardiac magnetic resonance imaging findings and the risk of cardiovascular events in patients with recent myocardial infarction or suspected or known coronary artery disease: a systematic review of prognostic studies. J Am Coll Cardiol 63(11):1031–1045PubMedGoogle Scholar
  109. 109.
    Gerber BL, Rousseau MF, Ahn SA, le Polain de Waroux JB, Pouleur AC, Phlips T et al (2012) Prognostic value of myocardial viability by delayed-enhanced magnetic resonance in patients with coronary artery disease and low ejection fraction: impact of revascularization therapy. J Am Coll Cardiol 59(9):825–835PubMedGoogle Scholar
  110. 110.
    Canadian Cardiovascular Society Heart Failure Management Primary P, Moe GW, Ezekowitz JA, O’Meara E, Howlett JG, Fremes SE, et al. (2014) The 2013 Canadian Cardiovascular Society Heart Failure Management Guidelines Update: focus on rehabilitation and exercise and surgical coronary revascularization. Can J Cardiol 30(3):249–263Google Scholar
  111. 111.
    Jimenez Juan L, Crean AM, Wintersperger BJ (2015) Late gadolinium enhancement imaging in assessment of myocardial viability: techniques and clinical applications. Radiol Clin North Am 53(2):397–411PubMedGoogle Scholar
  112. 112.
    Wellnhofer E, Olariu A, Klein C, Grafe M, Wahl A, Fleck E et al (2004) Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 109(18):2172–2174PubMedGoogle Scholar
  113. 113.
    Sheifer SE, Gersh BJ, Yanez ND 3rd, Ades PA, Burke GL, Manolio TA (2000) Prevalence, predisposing factors, and prognosis of clinically unrecognized myocardial infarction in the elderly. J Am Coll Cardiol 35(1):119–126PubMedGoogle Scholar
  114. 114.
    Schelbert EB, Cao JJ, Sigurdsson S, Aspelund T, Kellman P, Aletras AH et al (2012) Prevalence and prognosis of unrecognized myocardial infarction determined by cardiac magnetic resonance in older adultscardiac magnetic resonance and MI in older adults. JAMA 308(9):890–896PubMedPubMedCentralGoogle Scholar
  115. 115.
    Kwong RY, Sattar H, Wu H, Vorobiof G, Gandla V, Steel K et al (2008) Incidence and prognostic implication of unrecognized myocardial scar characterized by cardiac magnetic resonance in diabetic patients without clinical evidence of myocardial infarction. Circulation 118(10):1011–1020PubMedPubMedCentralGoogle Scholar
  116. 116.
    Turkbey EB, Nacif MS, Guo M, McClelland RL, Teixeira PB, Bild DE et al (2015) Prevalence and correlates of myocardial scar in a US cohort. JAMA 314(18):1945–1954PubMedPubMedCentralGoogle Scholar
  117. 117.
    Ebeling Barbier C, Bjerner T, Hansen T, Andersson J, Lind L, Hulthe J et al (2007) Clinically unrecognized myocardial infarction detected at MR imaging may not be associated with atherosclerosis. Radiology 245(1):103–110PubMedGoogle Scholar
  118. 118.
    Shan K, Nagueh SF, Zoghbi WA (1999) Assessment of myocardial viability with stress echocardiography. Cardiol Clin 17(3):539–553PubMedGoogle Scholar
  119. 119.
    Baer FM, Theissen P, Schneider CA, Voth E, Sechtem U, Schicha H et al (1998) Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 31(5):1040–1048PubMedGoogle Scholar
  120. 120.
    Sandstede JJ, Bertsch G, Beer M, Kenn W, Werner E, Pabst T et al (1999) Detection of myocardial viability by low-dose dobutamine Cine MR imaging. Magn Reson Imaging 17(10):1437–1443PubMedGoogle Scholar
  121. 121.
    Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajagopalan S, Simonetti OP et al (2011) Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging 4(3):269–278PubMedPubMedCentralGoogle Scholar
  122. 122.
    Kali A, Cokic I, Tang RL, Yang HJ, Sharif B, Marban E et al (2014) Determination of location, size, and transmurality of chronic myocardial infarction without exogenous contrast media by using cardiac magnetic resonance imaging at 3 T. Circ Cardiovasc Imaging 7(3):471–481PubMedPubMedCentralGoogle Scholar
  123. 123.
    Travin MI, Bergmann SR (2005) Assessment of myocardial viability. Semin Nucl Med 35(1):2–16PubMedGoogle Scholar
  124. 124.
    Schinkel AF, Bax JJ, Poldermans D, Elhendy A, Ferrari R, Rahimtoola SH (2007) Hibernating myocardium: diagnosis and patient outcomes. Curr Probl Cardiol 32(7):375–410PubMedGoogle Scholar
  125. 125.
    Gropler RJ (1994) Methodology governing the assessment of myocardial glucose metabolism by positron emission tomography and fluorine 18-labeled fluorodeoxyglucose. J Nucl Cardiol 1(2 Pt 2):S4–S14Google Scholar
  126. 126.
    Knuuti MJ, Nuutila P, Ruotsalainen U, Saraste M, Harkonen R, Ahonen A et al (1992) Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 33(7):1255–1262PubMedGoogle Scholar
  127. 127.
    Knuuti MJ, Yki-Jarvinen H, Voipio-Pulkki LM, Maki M, Ruotsalainen U, Harkonen R et al (1994) Enhancement of myocardial [fluorine-18]fluorodeoxyglucose uptake by a nicotinic acid derivative. J Nucl Med 35(6):989–998PubMedGoogle Scholar
  128. 128.
    Bax JJ, Veening MA, Visser FC, van Lingen A, Heine RJ, Cornel JH et al (1997) Optimal metabolic conditions during fluorine-18 fluorodeoxyglucose imaging; a comparative study using different protocols. Eur J Nucl Med 24(1):35–41PubMedGoogle Scholar
  129. 129.
    Machac J, Bacharach SL, Bateman TM, Bax JJ, Beanlands R, Bengel F et al (2006) Positron emission tomography myocardial perfusion and glucose metabolism imaging. J Nucl Cardiol 13(6):e121–e151Google Scholar
  130. 130.
    Brunken RC, Kottou S, Nienaber CA, Schwaiger M, Ratib OM, Phelps ME et al (1989) PET detection of viable tissue in myocardial segments with persistent defects at T1-201 SPECT. Radiology 172(1):65–73PubMedGoogle Scholar
  131. 131.
    Brunken RC, Mody FV, Hawkins RA, Nienaber C, Phelps ME, Schelbert HR (1992) Positron emission tomography detects metabolic viability in myocardium with persistent 24-hour single-photon emission computed tomography 201Tl defects. Circulation 86(5):1357–1369PubMedGoogle Scholar
  132. 132.
    Rohatgi R, Epstein S, Henriquez J, Ababneh AA, Hickey KT, Pinsky D et al (2001) Utility of positron emission tomography in predicting cardiac events and survival in patients with coronary artery disease and severe left ventricular dysfunction. Am J Cardiol 87(9):1096–1099PubMedGoogle Scholar
  133. 133.
    Slart RH, Bax JJ, van Veldhuisen DJ, van der Wall EE, Irwan R, Sluiter WJ et al (2006) Prediction of functional recovery after revascularization in patients with chronic ischaemic left ventricular dysfunction: head-to-head comparison between 99mTc-sestamibi/18F-FDG DISA SPECT and 13N-ammonia/ 18F-FDG PET. Eur J Nucl Med Mol Imaging 33(6):716–723PubMedGoogle Scholar
  134. 134.
    Tillisch J, Brunken R, Marshall R, Schwaiger M, Mandelkern M, Phelps M et al (1986) Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 314(14):884–888PubMedGoogle Scholar
  135. 135.
    Slart RH, Bax JJ, van Veldhuisen DJ, van der Wall EE, Dierckx RA, de Boer J et al (2006) Prediction of functional recovery after revascularization in patients with coronary artery disease and left ventricular dysfunction by gated FDG-PET. J Nucl Cardiol 13(2):210–219PubMedGoogle Scholar
  136. 136.
    Bax JJ, Poldermans D, Elhendy A, Cornel JH, Boersma E, Rambaldi R et al (1999) Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. J Am Coll Cardiol 34(1):163–169PubMedGoogle Scholar
  137. 137.
    Di Carli MF, Asgarzadie F, Schelbert HR, Brunken RC, Laks H, Phelps ME et al (1995) Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 92(12):3436–3444PubMedGoogle Scholar
  138. 138.
    Tamaki N, Yonekura Y, Yamashita K, Saji H, Magata Y, Senda M et al (1989) Positron emission tomography using fluorine-18 deoxyglucose in evaluation of coronary artery bypass grafting. Am J Cardiol 64(14):860–865PubMedGoogle Scholar
  139. 139.
    vom Dahl J, Eitzman DT, al-Aouar ZR, Kanter HL, Hicks RJ, Deeb GM et al (1994) Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation 90(5):2356–2366Google Scholar
  140. 140.
    Santana CA, Shaw LJ, Garcia EV, Soler-Peter M, Candell-Riera J, Grossman GB et al (2004) Incremental prognostic value of left ventricular function by myocardial ECG-gated FDG PET imaging in patients with ischemic cardiomyopathy. J Nucl Cardiol 11(5):542–550PubMedGoogle Scholar
  141. 141.
    Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M et al (2007) F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (PARR-2). J Am Coll Cardiol 50(20):2002–2012PubMedGoogle Scholar
  142. 142.
    Bourque JM, Hasselblad V, Velazquez EJ, Borges-Neto S, O’Connor CM (2003) Revascularization in patients with coronary artery disease, left ventricular dysfunction, and viability: a meta-analysis. Am Heart J 146(4):621–627PubMedGoogle Scholar
  143. 143.
    Bonow RO, Maurer G, Lee KL, Holly TA, Binkley PF, Desvigne-Nickens P et al (2011) Myocardial viability and survival in ischemic left ventricular dysfunction. N Engl J Med 364(17):1617–1625PubMedPubMedCentralGoogle Scholar
  144. 144.
    Guyton RA, Smith AL (2016) Coronary bypass–survival benefit in heart failure. N Engl J Med 374(16):1576–1577PubMedGoogle Scholar
  145. 145.
    Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A et al (2011) Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med 364(17):1607–1616PubMedPubMedCentralGoogle Scholar
  146. 146.
    Velazquez EJ, Lee KL, Jones RH, Al-Khalidi HR, Hill JA, Panza JA et al (2016) Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 374(16):1511–1520PubMedPubMedCentralGoogle Scholar
  147. 147.
    Authors/Task Force m, Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J et al (2014) 2014 ESC/EACTS Guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) Developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J 35(37):2541–2619Google Scholar
  148. 148.
    McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K et al (2012) ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J 33(14):1787–1847PubMedGoogle Scholar
  149. 149.
    Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE Jr, Drazner MH et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 62(16):e147–e239Google Scholar
  150. 150.
    Bonow RO, Castelvecchio S, Panza JA, Berman DS, Velazquez EJ, Michler RE et al (2015) Severity of Remodeling, myocardial viability, and survival in ischemic LV dysfunction after surgical revascularization. JACC Cardiovasc Imaging 8(10):1121–1129PubMedPubMedCentralGoogle Scholar
  151. 151.
    Michler RE, Rouleau JL, Al-Khalidi HR, Bonow RO, Pellikka PA, Pohost GM et al (2013) Insights from the STICH trial: change in left ventricular size after coronary artery bypass grafting with and without surgical ventricular reconstruction. J Thorac Cardiovasc Surg 146(5):1139–1145PubMedGoogle Scholar
  152. 152.
    Multimodality Writing Group for Stable Ischemic Heart D, Wolk MJ, Bailey SR, Doherty JU, Douglas PS, Hendel RC et al. (2014) ACCF/AHA/ASE/ASNC/HFSA/HRS/SCAI/SCCT/SCMR/STS 2013 multimodality appropriate use criteria for the detection and risk assessment of stable ischemic heart disease: a report of the. American College of Cardiology Foundation Appropriate Use Criteria Task Force, American Heart Association, American Society of Echocardiography, American Society of Nuclear Cardiology, Heart Failure Society of America, Heart Rhythm Society, Society for Cardiovascular Angiography and Interventions, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, and Society of Thoracic Surgeons. J Card Fail 20(2):65–90Google Scholar
  153. 153.
    Raff GL, Chinnaiyan KM, Cury RC, Garcia MT, Hecht HS, Hollander JE et al (2014) SCCT guidelines on the use of coronary computed tomographic angiography for patients presenting with acute chest pain to the emergency department: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee. J Cardiovasc Comput Tomogr 8(4):254–271PubMedGoogle Scholar
  154. 154.
    Brindis RG, Douglas PS, Hendel RC, Peterson ED, Wolk MJ, Allen JM et al (2005) ACCF/ASNC appropriateness criteria for single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI): a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group and the American Society of Nuclear Cardiology endorsed by the American Heart Association. J Am Coll Cardiol 46(8):1587–1605PubMedGoogle Scholar
  155. 155.
    Task Force M, Montalescot G, Sechtem U, Achenbach S, Andreotti F, Arden C et al (2013) 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J 34(38):2949–3003Google Scholar
  156. 156.
    Van der Bruel A, Neyt M, Smit Y, Perera R, Van Der Weerdt A, Beek A et al. (2016) Diagnostiek coronaire hartziekten: ME-TA; [cited 2016. Available from: https://www.dropbox.com/sh/mbo4cppfwis9re9/bnvURkxxco/Diagnostiek%20coronaire%20hartziekten.pdf
  157. 157.
    Genders TS, Petersen SE, Pugliese F, Dastidar AG, Fleischmann KE, Nieman K et al (2015) The optimal imaging strategy for patients with stable chest pain: a cost-effectiveness analysis. Ann Intern Med 162(7):474–484PubMedGoogle Scholar
  158. 158.
    Moss AJ, Williams MC, Newby DE, Nicol ED. The Updated NICE., Guidelines (2017) Cardiac CT as the first-line test for coronary artery disease. Curr Cardiovasc Imaging Rep 10(5):15PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Arthur E. Stillman
    • 1
  • Matthijs Oudkerk
    • 2
  • David A. Bluemke
    • 3
  • Menko Jan de Boer
    • 4
  • Jens Bremerich
    • 5
  • Ernest V. Garcia
    • 1
  • Matthias Gutberlet
    • 6
  • Pim van der Harst
    • 7
  • W. Gregory Hundley
    • 8
  • Michael Jerosch-Herold
    • 9
  • Dirkjan Kuijpers
    • 10
  • Raymond Y. Kwong
    • 11
  • Eike Nagel
    • 12
  • Stamatios Lerakis
    • 13
  • John Oshinski
    • 1
  • Jean-François Paul
    • 14
  • Riemer H. J. A. Slart
    • 15
  • Vinod Thourani
    • 16
  • Rozemarijn Vliegenthart
    • 17
  • Bernd J. Wintersperger
    • 18
  1. 1.Department of Radiology and Imaging SciencesEmory UniversityAtlantaUSA
  2. 2.Center of Medical ImagingUniversity Medical Center GroningenGroningenThe Netherlands
  3. 3.Department of Radiology and Imaging SciencesNational Institute of Biomedical Imaging and BioengineeringBethesdaUSA
  4. 4.Department of CardiologyRadboud University Medical Center NijmegenNijmegenThe Netherlands
  5. 5.Department of RadiologyUniversity of Basel HospitalBaselSwitzerland
  6. 6.Diagnostic and Interventional RadiologyUniversity Hospital LeipzigLeipzigGermany
  7. 7.Department of GeneticsUniversity Medical Center GroningenGroningenThe Netherlands
  8. 8.Departments of Internal Medicine & RadiologyWake Forest UniversityWinston-SalemUSA
  9. 9.Department of RadiologyBrigham and Women’s HospitalBostonUSA
  10. 10.Department of RadiologyHaaglanden Medical CenterThe HagueThe Netherlands
  11. 11.Department of CardiologyBrigham and Women’s HospitalBostonUSA
  12. 12.Institute for Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular ImagingUniversity HospitalFrankfurt/MainGermany
  13. 13.Department of MedicineEmory UniversityAtlantaUSA
  14. 14.Department of RadiologyInstitut Mutualiste MontsourisParisFrance
  15. 15.Department of Nuclear Medicine and Molecular Imaging, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
  16. 16.Department of Cardiac Surgery, MedStar Heart and Vascular InstituteGeorgetown UniversityWashingtonUSA
  17. 17.Department of RadiologyUniversity Medical Center GroningenGroningenThe Netherlands
  18. 18.Department of Medical ImagingUniversity of TorontoTorontoCanada

Personalised recommendations