Myocardial perfusion in patients with non-ischaemic systolic heart failure and type 2 diabetes: a cross-sectional study using Rubidium-82 PET/CT

  • Christina ByrneEmail author
  • Philip Hasbak
  • Andreas Kjaer
  • Jens Jakob Thune
  • Lars Køber
Original Paper


Both patients with non-ischaemic systolic heart failure and patients with type 2 diabetes (T2DM) often have reduced myocardial blood flow without significant coronary atherosclerosis. However, the mechanisms are not fully understood. The aim of this study was to investigate whether perfusion is reduced additionally when the 2 are combined. In a cross-sectional study, we scanned patients with non-ischaemic systolic heart failure with and without T2DM using Rubidium-82 positron emission tomography/computed tomography at rest and adenosine-induced stress, thereby obtaining the myocardial flow reserve (myocardial flow reserve (MFR) = stress flow/rest flow) as a measure of the myocardial vasomotor function; 28 patients with T2DM and 123 without T2DM were included. All patients received heart failure treatment according to guidelines. Multiple regression analysis was performed to assess the association between T2DM and MFR. Age [68 (60–75) years vs. 68 (62–72) years; P = 0.84] and female sex (21% vs. 33%; P = 0.26) were similar between patients with and without T2DM. Patients with T2DM had higher body mass index, (29.9 vs. 26.5 kg/m2; P = 0.02), higher blood glucose (6.2 vs. 5.7 mmol/L; P = 0.03), more often hypertension (50 vs. 27%; P = 0.02) and received more cholesterol lowering medication (61 vs. 35%; P = 0.02). Apart from this, the groups were similar. In a multivariable analysis, MFR was 16% lower in patients with T2DM compared with patients without [estimate − 16%; 95% confidence interval (CI) − 29 to − 0.7%; P = 0.04]. Patients with T2DM and systolic heart failure have lower myocardial flow reserve compared with heart failure patients without T2DM.


Myocardial perfusion Positron emission tomography Non-ischaemic systolic heart Failure Diabetes 



Rubidium-82 positron emission tomography/computed tomography


Coronary artery calcium score


Cardiac resynchronisation therapy


A DANish randomized, controlled, multicenter study to assess the efficacy of implantable cardioverter defibrillator in patients with non-ischaemic systolic heart failure on mortality


Myocardial blood flow


Myocardial flow reserve


Myocardial perfusion imaging


Rate pressure product


Summed difference score


Summed rest score


Summed stress score


Transient ischaemic dilation



Københavns Universitet (Copenhagen, DK), Hjerteforeningen (Copenhagen, DK), Arvid Nielssons Fond (Copenhagen, DK), Grosserer Valdemar Foersom og hustru Thyra Foersoms Fond (Copenhagen, DK), Snedkermester Sophus Jacobsen og hustru Astrid Jacobsens Fond (Copenhagen, DK), and Eva og Henry Frænkels Mindefond (Holte, DK).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10554_2017_1295_MOESM1_ESM.docx (20 kb)
Supplementary material 1 (DOCX 19 KB)
10554_2017_1295_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 19 KB)
10554_2017_1295_MOESM3_ESM.docx (20 kb)
Supplementary material 3 (DOCX 20 KB)
10554_2017_1295_MOESM4_ESM.docx (18 kb)
Supplementary material 4 (DOCX 18 KB)


  1. 1.
    O’Neill JO, McCarthy PM, Brunken RC et al (2004) PET abnormalities in patients with nonischemic cardiomyopathy. J Card Fail 10:244–249. CrossRefPubMedGoogle Scholar
  2. 2.
    de Jong RM, Tio RA, van der Harst P et al (2009) Ischemic patterns assessed by positron emission tomography predict adverse outcome in patients with idiopathic dilated cardiomyopathy. J Nucl Cardiol 16:769–774. CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Iskandrian AS, Hakki AH, Newman D (1985) The relation between myocardial ischemia and the ejection fraction response to exercise in patients with normal or abnormal resting left ventricular function. Am Heart J 109:1253–1258CrossRefPubMedGoogle Scholar
  4. 4.
    De Boer RA, Pinto YM, Van Veldhuisen DJ (2003) The imbalance between oxygen demand and supply as a potential mechanism in the pathophysiology of heart failure: the role of microvascular growth and abnormalities. Microcirculation 10:113–126. CrossRefPubMedGoogle Scholar
  5. 5.
    Picchi A, Limbruno U, Focardi M et al (2011) Increased basal coronary blood flow as a cause of reduced coronary flow reserve in diabetic patients. AJP Heart Circ Physiol 301:H2279–H2284. CrossRefGoogle Scholar
  6. 6.
    Nahser PJ, Brown RE, Oskarsson H et al (1995) Maximal coronary flow reserve and metabolic coronary vasodilation in patients with diabetes mellitus. Circulation 91:635–640. CrossRefPubMedGoogle Scholar
  7. 7.
    von Scholten BJ, Hasbak P, Christensen TE et al (2016) Cardiac 82Rb PET/CT for fast and non-invasive assessment of microvascular function and structure in asymptomatic patients with type 2 diabetes. Diabetologia 59:371–378. CrossRefGoogle Scholar
  8. 8.
    Johansson I, Dahlström U, Edner M et al (2016) Prognostic implications of type 2 diabetes mellitus in ischemic and non-ischemic heart failure. J Am Coll Cardiol 68:1404–1416. CrossRefPubMedGoogle Scholar
  9. 9.
    Germino M, Ropchan J, Mulnix T et al (2016) Quantification of myocardial blood flow with 82Rb: validation with 15O-water using time-of-flight and point-spread-function modeling. EJNMMI Res. PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Majmudar MD, Murthy VL, Shah RV et al (2015) Quantification of coronary flow reserve in patients with ischaemic and non-ischaemic cardiomyopathy and its association with clinical outcomes. Eur Heart J Cardiovasc Imaging 16:900–909. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Neglia D, Michelassi C, Trivieri MG et al (2002) Prognostic role of myocardial blood flow impairment in idiopathic left ventricular dysfunction. Circulation 105:186–193CrossRefPubMedGoogle Scholar
  12. 12.
    Hagemann CE, Ghotbi AA, Kjær A, Hasbak P (2015) Quantitative myocardial blood flow with rubidium-82 PET: a clinical perspective. Am J Nucl Med Mol Imaging 5:457–468PubMedPubMedCentralGoogle Scholar
  13. 13.
    Køber L, Thune JJ, Nielsen JC et al (2016) Defibrillator implantation in patients with non-ischemic systolic heart failure. N Engl J Med. CrossRefPubMedGoogle Scholar
  14. 14.
    Agatston AS, Janowitz WR, Hildner FJ et al (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15:827–832. CrossRefPubMedGoogle Scholar
  15. 15.
    Armstrong IS, Tonge CM, Arumugam P (2014) Impact of point spread function modeling and time-of-flight on myocardial blood flow and myocardial flow reserve measurements for rubidium-82 cardiac PET. J Nucl Cardiol 21:467–474. CrossRefPubMedGoogle Scholar
  16. 16.
    Lortie M, Beanlands RSB, Yoshinaga K et al (2007) Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging 34:1765–1774. CrossRefPubMedGoogle Scholar
  17. 17.
    Czernin J, Muller P, Chan S et al (1993) Influence of age and hemodynamics on myocardial blood flow and flow reserve. Circulation 88:62–69. CrossRefPubMedGoogle Scholar
  18. 18.
    Schindler TH, Schelbert HR, Quercioli A, Dilsizian V (2010) Cardiac PET imaging for the detection and monitoring of coronary artery disease and microvascular health. JACC Cardiovasc Imaging 3:623–640. CrossRefPubMedGoogle Scholar
  19. 19.
    Renaud JM, DaSilva JN, Beanlands RSB, deKemp RA (2013) Characterizing the normal range of myocardial blood flow with 82rubidium and 13N-ammonia PET imaging. J Nucl Cardiol 20:578–591. CrossRefPubMedGoogle Scholar
  20. 20.
    Cerqueira MD (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542. CrossRefPubMedGoogle Scholar
  21. 21.
    Dilsizian V, Bacharach SL, Beanlands RS et al (2016) ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 23:1187–1226. CrossRefPubMedGoogle Scholar
  22. 22.
    Byrne C, Jensen T, Hjortkjær H et al (2015) Myocardial perfusion at rest in patients with diabetes mellitus type 1 compared with healthy controls assessed with multi detector computed tomography. Diabetes Res Clin Pract 107:15–22. CrossRefPubMedGoogle Scholar
  23. 23.
    Wang L, Jerosch-Herold M, Jacobs DR et al (2006) Coronary artery calcification and myocardial perfusion in asymptomatic adults. J Am Coll Cardiol 48:1018–1026. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Djaberi R, Beishuizen ED, Pereira AM et al (2008) Non-invasive cardiac imaging techniques and vascular tools for the assessment of cardiovascular disease in type 2 diabetes mellitus. Diabetologia 51:1581–1593. CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Range FT, Paul M, Schafers KP et al (2009) Myocardial perfusion in nonischemic dilated cardiomyopathy with and without atrial fibrillation. J Nucl Med 50:390–396. CrossRefPubMedGoogle Scholar
  26. 26.
    Range FT, Schafers M, Acil T et al (2007) Impaired myocardial perfusion and perfusion reserve associated with increased coronary resistance in persistent idiopathic atrial fibrillation. Eur Heart J 28:2223–2230. CrossRefPubMedGoogle Scholar
  27. 27.
    Clark DM, Plumb VJ, Epstein AE, Kay GN (1997) Hemodynamic effects of an irregular sequence of ventricular cycle lengths during atrial fibrillation. J Am Coll Cardiol 30:1039–1045. CrossRefPubMedGoogle Scholar
  28. 28.
    Tona F, Serra R, Di Ascenzo L et al (2014) Systemic inflammation is related to coronary microvascular dysfunction in obese patients without obstructive coronary disease. Nutr Metab Cardiovasc Dis 24:447–453. CrossRefPubMedGoogle Scholar
  29. 29.
    Oreopoulos A, Padwal R, Kalantar-Zadeh K et al (2008) Body mass index and mortality in heart failure: a meta-analysis. Am Heart J 156:13–22. CrossRefPubMedGoogle Scholar
  30. 30.
    Ylä-Herttuala S, Bridges C, Katz MG, Korpisalo P (2017) Angiogenic gene therapy in cardiovascular diseases: dream or vision? Eur Heart J 38:1365–1371. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  • Christina Byrne
    • 1
    • 2
    • 3
    Email author
  • Philip Hasbak
    • 2
  • Andreas Kjaer
    • 2
    • 3
  • Jens Jakob Thune
    • 4
  • Lars Køber
    • 1
    • 3
  1. 1.Department of CardiologyRigshospitalet, Copenhagen University HospitalCopenhagenDenmark
  2. 2.Department of Clinical Physiology, Nuclear Medicine & PET and Cluster for Molecular ImagingRigshospitalet and University of CopenhagenCopenhagenDenmark
  3. 3.Faculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
  4. 4.Department of CardiologyBispebjerg Hospital, University of CopenhagenCopenhagenDenmark

Personalised recommendations