Magnetic resonance guided renal denervation using active tracking: first in vivo experience in Swine

  • F. Bönner
  • S. Haberkorn
  • P. Behm
  • B. Schnackenburg
  • S. Krüger
  • S. Weiss
  • C. Meyer
  • M. Kelm
  • M. Neizel-WittkeEmail author
Original Paper


Interventional cardiovascular magnetic resonance (iCMR) might evolve as a technique to improve procedural success rates in cardiovascular interventions by combining intraprocedural guidance and simultaneous lesion imaging. The objective of the present study was to prove feasibility and estimate safety of renal sympathetic denervation guided by real-time iCMR using active tracking. Six pigs were examined in a 1.5 T MRI-System (Achieva, Philips Healthcare, Best, Netherlands) equipped with non-invasive hemodynamic control and in-room monitors displaying an interventional software platform [Interventional MRI Suite (iSuite), Philips Research, Hamburg, Germany]. MR-guided renal denervation was performed using a MR conditional non-irrigated ablation catheter with active tracking (Imricor, Burnsville, MN, USA). Real-time imaging for device guidance was performed with a TFE sequence, vessel patency was assessed with a 3D non-contrast angiography and velocity encoded imaging. Oedema of the renal artery was visualized by a high-resolution T2 SPIR sequence. Renal sympathetic denervation was feasible in all cases with survival of all animals. Non-contrast angiography displayed renal artery patency accompanied by equal flow conditions before and after the ablation in all cases as measured by velocity encoded imaging. Oedema imaging displayed a significant increase in relative signal intensity at renal artery ablations sites pre and post intervention (p < 0.05). The histologic examination revealed no signs of perforation or bleeding, while sufficient ablation lesions could be depicted. MR-guided renal sympathetic denervation using active tracking is feasible and the initial data suggest safety of this procedure. MR-guided renal sympathetic denervation offers the inherent strength of high soft tissue contrast thereby providing target information without the use of iodinated contrast agents or radiation.


Interventional MRI Renal denervation Arterial hypertension 



Balanced steady state free precession


Cardiovascular magnetic resonance




Hematoxylin and eosin


Interventional cardiovascular magnetic resonance


Intravascular ultrasound


Optical coherence tomography


Renal sympathetic denervation


Signal intensity


Triggered angiography non-contrast-enhanced



The authors thank Juliane Geisler and Anika Jahn for excellent technical support.


FB is funded by the German Research Council (Deutsche Forschungsgemeinschaft, DFG) BO-4264/1-1. MNW is funded by the Forschungskommission of the medical faculty Düsseldorf (14-2014). This study was in part supported by Cardiovascular Research Institute Düsseldorf (CARID).

Compliance with ethical standards

Competing interests

Dr. Schnackenburg is employed by Philips Healthcare. Dr. Weiss is employed by Philips Research Hamburg Dr. Krüger is employed by Philips Research Hamburg.

Ethical approval and consent to participate

Animal experiments were performed in accordance with the national guidelines on animal care and were approved by the state authority “Landesamt für Natur-, Umwelt- und Verbraucherschutz (LANUV)”.

Supplementary material

Supplementary material 1 (WMV 6713 KB)

Supplementary material 2 (WMV 1737 KB)


  1. 1.
    Sarafidis PA, Georgianos P, Bakris GL (2013) Resistant hypertension—its identification and epidemiology. Nat Rev Nephrol 9(1):51–58CrossRefPubMedGoogle Scholar
  2. 2.
    Kearney PM, Whelton M, Reynolds K, Whelton PK, He J (2004) Worldwide prevalence of hypertension: a systematic review. J Hypertens 22(1):11–19CrossRefPubMedGoogle Scholar
  3. 3.
    Kumbhani DJ, Steg PG, Cannon CP, Eagle KA, Smith SC Jr, Crowley K, Goto S, Ohman EM, Bakris GL, Perlstein TS, Kinlay S, Bhatt DL (2013) Resistant hypertension: a frequent and ominous finding among hypertensive patients with atherothrombosis. Eur Heart J 34(16):1204–1214CrossRefPubMedGoogle Scholar
  4. 4.
    Kumbhani DJ, Steg PG, Cannon CP, Eagle KA, Smith SC Jr, Hoffman E, Goto S, Ohman EM, Bhatt DL (2013) Adherence to secondary prevention medications and four-year outcomes in outpatients with atherosclerosis. Am J Med 126(8):693–700CrossRefPubMedGoogle Scholar
  5. 5.
    Hoobler SW, Manning JT, Paine WG, McClellan SG, Helcher PO, Renfert H, Peet MM, Kahn EA (1951) The effects of splanchnicectomy on the blood pressure in hypertension: a controlled study. Circulation 4(2):173–183CrossRefPubMedGoogle Scholar
  6. 6.
    Smithwick RH, Thompson JE (1953) Splanchnicectomy for essential hypertension; results in 1266 cases. J Am Med Assoc 152(16):1501–1504CrossRefPubMedGoogle Scholar
  7. 7.
    Esler M (2000) The sympathetic system and hypertension. Am J Hypertens 13(6 Pt 2):99S–105SGoogle Scholar
  8. 8.
    Fischell TA, Vega F, Raju N, Johnson ET, Kent DJ, Ragland RR, Fischell DR, Almany SL, Ghazarossian VE (2013) Ethanol-mediated perivascular renal sympathetic denervation: preclinical validation of safety and efficacy in a porcine model. EuroIntervention 9(1):140–147CrossRefPubMedGoogle Scholar
  9. 9.
    Krum H, Schlaich M, Whitbourn R, Sobotka PA, Sadowski J, Bartus K, Kapelak B, Walton A, Sievert H, Thambar S, Abraham WT, Esler M (2009) Catheter-based renal sympathetic denervation for resistant hypertension: a multicentre safety and proof-of-principle cohort study. Lancet 373(9671):1275–1281CrossRefPubMedGoogle Scholar
  10. 10.
    Esler MD, Krum H, Sobotka PA, Schlaich MP, Schmieder RE, Bohm M (2010) Renal sympathetic denervation in patients with treatment-resistant hypertension (The Symplicity HTN-2 Trial): a randomised controlled trial. Lancet 376(9756):1903–1909CrossRefPubMedGoogle Scholar
  11. 11.
    Kandzari DE, Bhatt DL, Sobotka PA, O’Neill WW, Esler M, Flack JM, Katzen BT, Leon MB, Massaro JM, Negoita M, Oparil S, Rocha-Singh K, Straley C, Townsend RR, Bakris G (2012) Catheter-based renal denervation for resistant hypertension: rationale and design of the SYMPLICITY HTN-3 Trial. Clin Cardiol 35(9):528–535CrossRefPubMedGoogle Scholar
  12. 12.
    Bhatt DL, Kandzari DE, O’Neill WW, D’Agostino R, Flack JM, Katzen BT, Leon MB, Liu M, Mauri L, Negoita M, Cohen SA, Oparil S, Rocha-Singh K, Townsend RR, Bakris GL (2014) A controlled trial of renal denervation for resistant hypertension. N Engl J Med 370(15):1393–1401CrossRefPubMedGoogle Scholar
  13. 13.
    Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, Flack JM, Katzen BT, Lea J, Lee DP, Leon MB, Ma A, Massaro J, Mauri L, Oparil S, O’Neill WW, Patel MR, Rocha-Singh K, Sobotka PA, Svetkey L, Townsend RR, Bakris GL (2015) Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J 36(4):219–227CrossRefPubMedGoogle Scholar
  14. 14.
    Steigerwald K, Titova A, Malle C, Kennerknecht E, Jilek C, Hausleiter J, Nahrig JM, Laugwitz KL, Joner M (2012) Morphological assessment of renal arteries after radiofrequency catheter-based sympathetic denervation in a porcine model. J Hypertens 30(11):2230–2239CrossRefPubMedGoogle Scholar
  15. 15.
    Sakakura K, Ladich E, Cheng Q, Otsuka F, Yahagi K, Fowler DR, Kolodgie FD, Virmani R, Joner M (2014) Anatomic assessment of sympathetic peri-arterial renal nerves in man. J Am Coll Cardiol 64(7):635–643CrossRefPubMedGoogle Scholar
  16. 16.
    Freyhardt P, Heckmann L, Beck A, Stolzenburg N, Schnorr J, Kamp J, Rinnenthal JL, Hamm B, Gunther RW, Streitparth F (2014) MR-guided high-focused ultrasound for renal sympathetic denervation-a feasibility study in pigs. J Ther Ultrasound 2:12CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Bonner F, Janzarik N, Jacoby C, Spieker M, Schnackenburg B, Range F, Butzbach B, Haberkorn S, Westenfeld R, Neizel-Wittke M, Flogel U, Kelm M (2015) Myocardial T2 mapping reveals age- and sex-related differences in volunteers. J Cardiovasc Magn Reson 17(1):9CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Sakakura K, Ladich E, Fuimaono K, Grunewald D, O’Fallon P, Spognardi AM, Markham P, Otsuka F, Yahagi K, Shen K, Kolodgie FD, Joner M, Virmani R (2015) Comparison of renal artery, soft tissue, and nerve damage after irrigated versus nonirrigated radiofrequency ablation. Circ Cardiovasc Interv 8(1):e001720CrossRefPubMedGoogle Scholar
  19. 19.
    Karampinos DC, Melkus G, Shepherd TM, Banerjee S, Saritas EU, Shankaranarayanan A, Hess CP, Link TM, Dillon WP, Majumdar S (2013) Diffusion tensor imaging and T2 relaxometry of bilateral lumbar nerve roots: feasibility of in-plane imaging. NMR Biomed 26(6):630–637PubMedGoogle Scholar
  20. 20.
    Grothoff M, Gutberlet M, Hindricks G, Fleiter C, Schnackenburg B, Weiss S, Krueger S, Piorkowski C, Gaspar T, Wedan S, Lloyd T, Sommer P, Hilbert S (2017) Magnetic resonance imaging guided transatrial electrophysiological studies in swine using active catheter tracking - experience with 14 cases. Eur Radiol 27(5):1954–1962CrossRefPubMedGoogle Scholar
  21. 21.
    Hilbert S, Sommer P, Gutberlet M, Gaspar T, Foldyna B, Piorkowski C, Weiss S, Lloyd T, Schnackenburg B, Krueger S, Fleiter C, Paetsch I, Jahnke C, Hindricks G, Grothoff M (2016) Real-time magnetic resonance-guided ablation of typical right atrial flutter using a combination of active catheter tracking and passive catheter visualization in man: initial results from a consecutive patient series. Europace 18(4):572–577CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • F. Bönner
    • 1
  • S. Haberkorn
    • 1
  • P. Behm
    • 1
  • B. Schnackenburg
    • 2
  • S. Krüger
    • 2
  • S. Weiss
    • 2
  • C. Meyer
    • 1
    • 3
  • M. Kelm
    • 1
    • 4
  • M. Neizel-Wittke
    • 1
    Email author
  1. 1.Division of Cardiology, Pulmonology and Vascular Medicine, Medical FacultyHeinrich Heine University DüsseldorfDüsseldorfGermany
  2. 2.Philips ResearchHamburgGermany
  3. 3.Department of Cardiology - Electrophysiology, University Heart CentreUniversity Hospital Hamburg-Eppendorf, (‘DZHK’ German Centre for Cardiovascular Research, Partner Site Hamburg/Kiel/Luebeck, Germany)HamburgGermany
  4. 4.Medical Faculty, Cardiovascular Research Institute Düsseldorf (CARID)Heinrich Heine University DüsseldorfDüsseldorfGermany

Personalised recommendations