4D modelling for rapid assessment of biventricular function in congenital heart disease

  • K. Gilbert
  • B. Pontre
  • C. J. Occleshaw
  • B. R. Cowan
  • A. Suinesiaputra
  • A. A. Young
Original Paper


Although more patients with congenital heart disease (CHD) are now living longer due to better surgical interventions, they require regular imaging to monitor cardiac performance. There is a need for robust clinical tools which can accurately assess cardiac function of both the left and right ventricles in these patients. We have developed methods to rapidly quantify 4D (3D + time) biventricular function from standard cardiac MRI examinations. A finite element model was interactively customized to patient images using guide-point modelling. Computational efficiency and ability to model large deformations was improved by predicting cardiac motion for the left ventricle and epicardium with a polar model. In addition, large deformations through the cycle were more accurately modeled using a Cartesian deformation penalty term. The model was fitted to user-defined guide points and image feature tracking displacements throughout the cardiac cycle. We tested the methods in 60 cases comprising a variety of congenital heart diseases and showed good correlation with the gold standard manual analysis, with acceptable inter-observer error. The algorithm was considerably faster than standard analysis and shows promise as a clinical tool for patients with CHD.


Congenital heart disease Biventricular modelling Cardiac function assessment 



This research was supported by the National Institutes of Health (NHLBI R01HL121754). The authors would also like to gratefully acknowledge the National Heart Foundation of New Zealand.


Kathleen Gilbert was funded by Green Lane Research and Education Fund.

Compliance with ethical standards

Conflict of interest

AAY reports receiving consulting fees from Siemens Healthcare.


  1. 1.
    Chahal H, McClelland RL, Tandri H, Jain A, Turkbey EB, Hundley WG, Barr RG, Kizer J, Lima JA, Bluemke DA et al (2012) Obesity and right ventricular structure and function: the mesa-right ventricle study. CHEST J 141(2):388–395CrossRefGoogle Scholar
  2. 2.
    Commowick O, Arsigny V, Isambert A, Costa J, Dhermain F, Bidault F, Bondiau PY, Ayache N, Malandain G (2008) An efficient locally affine framework for the smooth registration of anatomical structures. Med Image Anal 12(4):427–441CrossRefPubMedGoogle Scholar
  3. 3.
    Fogel MA, Weinberg PM, Fellows KE, Hoffman EA (1995) A study in ventricular-ventricular interaction single right ventricles compared with systemic right ventricles in a dual-chamber circulation. Circulation 92(2):219–230CrossRefPubMedGoogle Scholar
  4. 4.
    Gentles T, Cowan B, Occleshaw C, Colan S, Young A (2005) Midwall shortening after coarctation repair: the effect of through-plane motion on single-plane indices of left ventricular function. J Am Soc Echocardiogr 18(11):1131–1136CrossRefPubMedGoogle Scholar
  5. 5.
    Gilbert K, Cowan BR, Suinesiaputra A, Occleshaw C, Young AA (2014) Rapid d-affine biventricular cardiac function with polar prediction. In: International conference on medical image computing and computer-assisted intervention, Springer, pp 546–553Google Scholar
  6. 6.
    Gilbert K, Lam HI, Pontré B, Cowan B, Occleshaw C, Liu J, Young A (2015) An interactive tool for rapid biventricular analysis of congenital heart disease. Clin Physiol Funct Imaging 37:413CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Guihaire J, Haddad F, Mercier O, Murphy DJ, Wu JC, Fadel E (2012) The right heart in congenital heart disease, mechanisms and recent advances. J Clin & Exp Cardiol 8(10):1Google Scholar
  8. 8.
    Haddad F, Doyle R, Murphy DJ, Hunt SA (2008) Right ventricular function in cardiovascular disease, part II pathophysiology, clinical importance, and management of right ventricular failure. Circulation 117(13):1717–1731CrossRefPubMedGoogle Scholar
  9. 9.
    Heiberg E, Sjögren J, Ugander M, Carlsson M, Engblom H, Arheden H (2010) Design and validation of segment-freely available software for cardiovascular image analysis. BMC Med Imaging 10(1):1CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Hudsmith LE, Petersen SE, Francis JM, Robson MD, Neubauer S (2005) Normal human left and right ventricular and left atrial dimensions using steady state free precession magnetic resonance imaging. J Cardiovasc Magn Reson 7(5):775–782CrossRefPubMedGoogle Scholar
  11. 11.
    Lamata P, Niederer S, Nordsletten D, Barber DC, Roy I, Hose DR, Smith N (2011) An accurate, fast and robust method to generate patient-specific cubic Hermite meshes. Med Image Anal 15(6):801–813CrossRefPubMedGoogle Scholar
  12. 12.
    Li B, Cowan BR, Young AA (2010a) Real time myocardial strain analysis of tagged MR cines using element space non-rigid registration. In: Computer Vision—ACCV 2010, Springer, pp 385–396Google Scholar
  13. 13.
    Li B, Liu Y, Occleshaw CJ, Cowan BR, Young AA (2010b) In-line automated tracking for ventricular function with magnetic resonance imaging. JACC 3(8):860–866PubMedGoogle Scholar
  14. 14.
    Mcleod K, Seiler C, Toussaint N, Sermesant M, Pennec X (2013) Regional analysis of left ventricle function using a cardiac-specific polyaffine motion model. In: Functional imaging and modeling of the heart, Springer, pp 483–490Google Scholar
  15. 15.
    Perperidis D, Mohiaddin RH, Rueckert D (2005) Spatio-temporal free-form registration of cardiac MR image sequences. Med Image Anal 9(5):441–456CrossRefPubMedGoogle Scholar
  16. 16.
    Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2):169–184CrossRefPubMedGoogle Scholar
  17. 17.
    Petitjean C, Zuluaga MA, Bai W, Dacher JN, Grosgeorge D, Caudron J, Ruan S, Ayed IB, Cardoso MJ, Chen HC, Jimenez-Carretero D, Ledesma-Carbayo MJ, Davatzikos C, Doshi J, Erus G, Maier OMO, Nambakhsh CMS, Ou Y, Ourselin S, Peng CW, Peters NS, Peters TM, Rajchl M, Rueckert D, Santos A, Shi W, Wang CW, Wang H, Yuan J (2015) Right ventricle segmentation from cardiac MRI: a collation study. Med Image Anal 19(1):187–202CrossRefPubMedGoogle Scholar
  18. 18.
    Pfisterer M, Emmenegger H, Soler M, Burkart F (1986) Prognostic significance of right ventricular ejection fraction for persistent complex ventricular arrhythmias and/or sudden cardiac death after first myocardial infarction: relation to infarct location, size and left ventricular function. Eur Heart J 7(4):289–298CrossRefPubMedGoogle Scholar
  19. 19.
    Redington AN (2002) Right ventricular function. Cardiol Clin 20(3):341–349CrossRefPubMedGoogle Scholar
  20. 20.
    Roest AA, de Roos A (2012) Imaging of patients with congenital heart disease. Nat Rev Cardiol 9(2):101–115CrossRefGoogle Scholar
  21. 21.
    Sheehan FH, Ge S, Vick GW, Urnes K, Kerwin WS, Bolson EL, Chung T, Kovalchin JP, Sahn DJ, Jerosch-Herold M et al (2008) Three-dimensional shape analysis of right ventricular remodeling in repaired tetralogy of Fallot. Am J Cardiol 101(1):107–113CrossRefPubMedGoogle Scholar
  22. 22.
    Suinesiaputra A, Cowan BR, Al-Agamy AO, Elattar MA, Ayache N, Fahmy AS, Khalifa AM, Medrano-Gracia P, Jolly MP, Kadish AH et al (2014) A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images. Med Image Anal 18(1):50–62CrossRefPubMedGoogle Scholar
  23. 23.
    Victor P (1998) Sobolev regularization of a nonlinear ill-posed parabolic problem as a model for aggregating populations. Commun Partial Differ Equ 23(3–4):457–486CrossRefGoogle Scholar
  24. 24.
    Wang Z, Ben Salah M, Gu B, Islam A, Goela A, Li S (2014) Direct estimation of cardiac biventricular volumes with an adapted bayesian formulation. IEEE Trans Biomed Eng 61(4):1251–1260CrossRefPubMedGoogle Scholar
  25. 25.
    Young AA, Cowan BR, Thrupp SF, Hedley WJ, Dell’Italia LJ (2000) Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology 216(2):597–602CrossRefPubMedGoogle Scholar
  26. 26.
    Zhuang X, Arridge S, Hawkes DJ, Ourselin S (2011) A nonrigid registration framework using spatially encoded mutual information and free-form deformations. IEEE Trans Med Imaging 30(10):1819–1828CrossRefPubMedGoogle Scholar
  27. 27.
    Zuluaga MA, Cardoso MJ, Modat M, Ourselin S (2013) Multi-atlas propagation whole heart segmentation from MRI and CTA using a local normalised correlation coefficient criterion. In: International conference on functional imaging and modeling of the heart, Springer, pp 174–181Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Department of Anatomy and Medical Imaging, Faculty of Medical and Health SciencesThe University of AucklandAucklandNew Zealand
  2. 2.Auckland City HospitalAucklandNew Zealand

Personalised recommendations