Advertisement

The International Journal of Cardiovascular Imaging

, Volume 33, Issue 12, pp 1969–1978 | Cite as

Association between flow skewness and aortic dilatation in patients with aortic stenosis

  • Hojin Ha
  • Hyun Jung Koo
  • June Goo Lee
  • Guk Bae Kim
  • Jihoon Kweon
  • Sang Joon Lee
  • Joon Won Kang
  • Tae Hwan Lim
  • Dae Hee Kim
  • Jong Min Song
  • Duk Hyun Kang
  • Jae Kwan Song
  • Young Hak Kim
  • Namkug Kim
  • Dong Hyun YangEmail author
Original Paper

Abstract

We investigated association between hemodynamic characteristics and aortic dilatation in patients with severe aortic stenosis (AS). Eighty patients with severe AS (mean age, 67.2 ± 12.5 years) who underwent multi-detector computed tomography and phase-contrast magnetic resonance imaging at the ascending aorta were retrospectively analyzed. Patients with an ascending aorta diameter >4 cm had a significantly higher forward flow rate at systole (28.5 ± 6.0 vs. 36.2 ± 8.6 L min, P < 0.001), and retrograde flow rate at systole (11.3 ± 4.2 vs. 18.8 ± 5.8 L min, P < 0.001), fractional reverse ratio (a ratio of retrograde flow rate to forward flow rate; 34.1 ± 11.9% vs. 43.5 ± 18.0%, P = 0.014), flow skewness Rskewness (a ratio of sum of forward and retrograde systole flow to net systole flow rate; 2.4 ± 0.7 vs. 3.2 ± 1.0, P < 0.001). The presence of bicuspid aortic valve (BAV; odds ratio [OR] 72.01, 95% confidence interval [CI] 10.57–490.46, P < 0.001), Left ventricular mass index (LVMI; OR 1.02 /g/m2; CI 1.00–1.04, P = 0.043) and Rskewness (OR 5.6 per 1, 95% CI 1.8–17.1, P = 0.001) were associated with aortic dilatation. BAV, LVMI, and increased Rskewness in the ascending aorta are associated with aortic dilatation in patients with AS.

Keywords

Phase-contrast magnetic resonance imaging 2D PC-MRI Wall shear stress Aortic stenosis Hemodynamics Aortic dilatation 

Notes

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2016R1A1A1A05921207, 2015R1A2A2A04003034) and a grant (2017-7208) from the Asan Institute for Life Sciences, Asan Medical Center, Seoul, Korea. The study protocol was approved by the hospital institutional review board.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10554_2017_1196_MOESM1_ESM.pdf (367 kb)
Supplementary material 1 (PDF 366 KB)

References

  1. 1.
    Ward C (2000) Clinical significance of the bicuspid aortic valve. Heart 83(1):81–85CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Basso C, Boschello M, Perrone C, Mecenero A, Cera A, Bicego D, Thiene G, De Dominicis E (2004) An echocardiographic survey of primary school children for bicuspid aortic valve. Am J Cardiol 93(5):661–663CrossRefPubMedGoogle Scholar
  3. 3.
    Nistri S, Basso C, Marzari C, Mormino P, Thiene G (2005) Frequency of bicuspid aortic valve in young male conscripts by echocardiogram. Am J Cardiol 96(5):718–721CrossRefPubMedGoogle Scholar
  4. 4.
    Roberts WC, Ko JM (2005) Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 111(7):920–925CrossRefPubMedGoogle Scholar
  5. 5.
    Nistri S, Sorbo M, Marin M, Palisi M, Scognamiglio R, Thiene G (1999) Aortic root dilatation in young men with normally functioning bicuspid aortic valves. Heart 82(1):19–22CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hahn RT, Roman MJ, Mogtadek AH, Devereux RB (1992) Association of aortic dilation with regurgitant, stenotic and functionally normal bicuspid aortic valves. J Am Coll Cardiol 19(2):283–288CrossRefPubMedGoogle Scholar
  7. 7.
    Sabet HY, Edwards WD, Tazelaar HD, Daly RC (1999) Congenitally bicuspid aortic valves: a surgical pathology study of 542 cases (1991 through 1996) and a literature review of 2,715 additional cases. Mayo Clin Proc 1:14–26CrossRefGoogle Scholar
  8. 8.
    Fernandes SM, Sanders SP, Khairy P, Jenkins KJ, Gauvreau K, Lang P, Simonds H, Colan SD (2004) Morphology of bicuspid aortic valve in children and adolescents. J Am Coll Cardiol 44(8):1648–1651CrossRefPubMedGoogle Scholar
  9. 9.
    Sievers H-H, Sievers HL (2011) Aortopathy in bicuspid aortic valve disease—genes or hemodynamics? or Scylla and Charybdis? Eur J Cardiothorac Surg 39(6):803–804CrossRefPubMedGoogle Scholar
  10. 10.
    Loscalzo ML, Goh DL, Loeys B, Kent KC, Spevak PJ, Dietz HC (2007) Familial thoracic aortic dilation and bicommissural aortic valve: a prospective analysis of natural history and inheritance. Am J Med Genet Part A 143(17):1960–1967CrossRefGoogle Scholar
  11. 11.
    Cripe L, Andelfinger G, Martin LJ, Shooner K, Benson DW (2004) Bicuspid aortic valve is heritable. J Am Coll Cardiol 44(1):138–143CrossRefPubMedGoogle Scholar
  12. 12.
    Fedak PW, Verma S, David TE, Leask RL, Weisel RD, Butany J (2002) Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106(8):900–904CrossRefPubMedGoogle Scholar
  13. 13.
    Yasuda H, Nakatani S, Stugaard M, Tsujita-Kuroda Y, Bando K, Kobayashi J, Yamagishi M, Kitakaze M, Kitamura S, Miyatake K (2003) Failure to prevent progressive dilation of ascending aorta by aortic valve replacement in patients with bicuspid aortic valve: comparison with tricuspid aortic valve. Circulation 108(10 suppl 1):II-291–II-294Google Scholar
  14. 14.
    Tadros TM, Klein MD, Shapira OM (2009) Ascending aortic dilatation associated with bicuspid aortic valve pathophysiology, molecular biology, and clinical implications. Circulation 119(6):880–890CrossRefPubMedGoogle Scholar
  15. 15.
    Bissell MM, Hess AT, Biasiolli L, Glaze SJ, Loudon M, Pitcher A, Davis A, Prendergast B, Markl M, Barker AJ (2013) Aortic dilation in bicuspid aortic valve disease flow pattern is a major contributor and differs with valve fusion type. Circ Cardiovasc Imaging 6(4):499–507CrossRefPubMedGoogle Scholar
  16. 16.
    Barker AJ, Markl M, Bürk J, Lorenz R, Bock J, Bauer S, Schulz-Menger J, von Knobelsdorff-Brenkenhoff F (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5(4):457–466CrossRefPubMedGoogle Scholar
  17. 17.
    Meierhofer C, Schneider EP, Lyko C, Hutter A, Martinoff S, Markl M, Hager A, Hess J, Stern H, Fratz S (2013) Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur Heart J Cardiovasc Imaging 14(8):797–804CrossRefPubMedGoogle Scholar
  18. 18.
    Guzzardi DG, Barker AJ, van Ooij P, Malaisrie SC, Puthumana JJ, Belke DD, Mewhort HE, Svystonyuk DA, Kang S, Verma S (2015) Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J Am Coll Cardiol 66(8):892–900CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Raghav V, Barker AJ, Mangiameli D, Mirabella L, Markl M, Yoganathan AP (2017) Valve mediated hemodynamics and their association with distal ascending aortic diameter in bicuspid aortic valve subjects. J Magn Reson Imaging. doi:  10.1002/jmri.25719 PubMedGoogle Scholar
  20. 20.
    Lehoux S, Tedgui A (2003) Cellular mechanics and gene expression in blood vessels. J Biomech 36(5):631–643CrossRefPubMedGoogle Scholar
  21. 21.
    Piatti F, Pirola S, Bissell M, Nesteruk I, Sturla F, Della Corte A, Redaelli A, Votta E (2017) Towards the improved quantification of in vivo abnormal wall shear stresses in BAV-affected patients from 4D-flow imaging: benchmarking and application to real data. J Biomech 50:93–101CrossRefPubMedGoogle Scholar
  22. 22.
    Saikrishnan N, Mirabella L, Yoganathan AP (2015) Bicuspid aortic valves are associated with increased wall and turbulence shear stress levels compared to trileaflet aortic valves. Biomech Model Mechanobiol 14(3):577–588CrossRefPubMedGoogle Scholar
  23. 23.
    Shan Y, Li J, Wang Y, Wu B, Barker AJ, Markl M, Wang C, Wang X, Shu X (2017) Aortic shear stress in patients with bicuspid aortic valve with stenosis and insufficiency. J Thorac Cardiovasc Surg 156(6):1263–1272CrossRefGoogle Scholar
  24. 24.
    Kimura N, Nakamura M, Komiya K, Nishi S, Yamaguchi A, Tanaka O, Misawa Y, Adachi H, Kawahito K (2017) Patient-specific assessment of hemodynamics by computational fluid dynamics in patients with bicuspid aortopathy. J Thorac Cardiovasc Surg 153(4):S52–S62 [e53]CrossRefGoogle Scholar
  25. 25.
    Youssefi P, Sharma R, Figueroa CA, Jahangiri M (2016) Functional assessment of thoracic aortic aneurysms–the future of risk prediction? Br Med Bull 121(1):61–71CrossRefGoogle Scholar
  26. 26.
    Barker AJ, Lanning C, Shandas R (2010) Quantification of hemodynamic wall shear stress in patients with bicuspid aortic valve using phase-contrast MRI. Ann Biomed Eng 38(3):788–800CrossRefPubMedGoogle Scholar
  27. 27.
    Mirabella L, Barker AJ, Saikrishnan N, Coco ER, Mangiameli DJ, Markl M, Yoganathan AP (2015) MRI-based protocol to characterize the relationship between bicuspid aortic valve morphology and hemodynamics. Ann Biomed Eng 43(8):1815–1827CrossRefPubMedGoogle Scholar
  28. 28.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin III JP, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt III TM, Thomas JD, American College of Cardiology/American Heart Association, Task Force on Practice G (2014) 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 63 (22):e57–e185. doi: 10.1016/j.jacc.2014.02.536 CrossRefPubMedGoogle Scholar
  29. 29.
    Achenbach S, Delgado V, Hausleiter J, Schoenhagen P, Min JK, Leipsic JA (2012) SCCT expert consensus document on computed tomography imaging before transcatheter aortic valve implantation (TAVI)/transcatheter aortic valve replacement (TAVR). J Cardiovasc Comput Tomogr 6(6):366–380. doi: 10.1016/j.jcct.2012.11.002 CrossRefPubMedGoogle Scholar
  30. 30.
    Kang JW, Song HG, Yang DH, Baek S, Kim DH, Song JM, Kang DH, Lim TH, Song JK (2013) Association between bicuspid aortic valve phenotype and patterns of valvular dysfunction and bicuspid aortopathy: comprehensive evaluation using MDCT and echocardiography. JACC Cardiovasc Imaging 6(2):150–161. doi: 10.1016/j.jcmg.2012.11.007 CrossRefPubMedGoogle Scholar
  31. 31.
    Ha H, Choi W, Park H, Lee SJ (2014) Advantageous swirling flow in 45° end-to-side anastomosis. Exp Fluids 55(12):1–13CrossRefGoogle Scholar
  32. 32.
    von Knobelsdorff-Brenkenhoff F, Karunaharamoorthy A, Trauzeddel RF, Barker AJ, Blaszczyk E, Markl M, Schulz-Menger J (2016) Evaluation of aortic blood flow and wall shear stress in aortic stenosis and its association with left ventricular remodeling. Circ Cardiovasc Imaging 9(3):e004038Google Scholar
  33. 33.
    Girdauskas E, Rouman M, Disha K, Fey B, Dubslaff G, Theis B, Petersen I, Gutberlet M, Borger MA, Kuntze T (2016) Functional aortic root parameters and expression of aortopathy in bicuspid versus tricuspid aortic valve stenosis. J Am Coll Cardiol 67(15):1786–1796CrossRefPubMedGoogle Scholar
  34. 34.
    Burris NS, Sigovan M, Knauer HA, Tseng EE, Saloner D, Hope MD (2014) Systolic flow displacement correlates with future ascending aortic growth in patients with bicuspid aortic valves undergoing magnetic resonance surveillance. Invest Radiol 49(10):635–639CrossRefPubMedGoogle Scholar
  35. 35.
    Stalder A, Russe M, Frydrychowicz A, Bock J, Hennig J, Markl M (2008) Quantitative 2D and 3D phase contrast MRI: optimized analysis of blood flow and vessel wall parameters. Magn Reson Med 60(5):1218–1231CrossRefPubMedGoogle Scholar
  36. 36.
    Sigovan M, Hope MD, Dyverfeldt P, Saloner D (2011) Comparison of four-dimensional flow parameters for quantification of flow eccentricity in the ascending aorta. J Magn Reson Imaging 34(5):1226–1230CrossRefPubMedGoogle Scholar
  37. 37.
    Sherwin S, Blackburn HM (2005) Three-dimensional instabilities and transition of steady and pulsatile axisymmetric stenotic flows. J Fluid Mech 533:297–327CrossRefGoogle Scholar
  38. 38.
    Varghese SS, Frankel SH, Fischer PF (2007) Direct numerical simulation of stenotic flows. Part 1. Steady flow. J Fluid Mech 582:253–280CrossRefGoogle Scholar
  39. 39.
    Dyverfeldt P, Hope MD, Tseng EE, Saloner D (2013) Magnetic resonance measurement of turbulent kinetic energy for the estimation of irreversible pressure loss in aortic stenosis. JACC Cardiovasc Imaging 6(1):64–71CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ha H, Kim GB, Kweon J, Huh HK, Lee SJ, Koo HJ, Kang J-W, Lim T-H, Kim D-H, Kim Y-H (2016) Turbulent kinetic energy measurement using phase contrast MRI for estimating the post-stenotic pressure drop: in vitro validation and clinical application. PloS ONE 11(3):e0151540CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Casas B, Lantz J, Dyverfeldt P, Ebbers T (2015) 4D flow MRI-Based pressure loss estimation in stenotic flows: evaluation using numerical simulations. Magn Reson Med 75(4):1808–1821CrossRefPubMedGoogle Scholar
  42. 42.
    Petersson S, Dyverfeldt P, Ebbers T (2012) Assessment of the accuracy of MRI wall shear stress estimation using numerical simulations. J Magn Reson Imaging 36(1):128–138CrossRefPubMedGoogle Scholar
  43. 43.
    Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Buechel ERV, Yoo S-J, Powell AJ (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15(1):51CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Hojin Ha
    • 1
  • Hyun Jung Koo
    • 2
  • June Goo Lee
    • 3
  • Guk Bae Kim
    • 3
  • Jihoon Kweon
    • 4
  • Sang Joon Lee
    • 1
    • 5
  • Joon Won Kang
    • 2
  • Tae Hwan Lim
    • 2
  • Dae Hee Kim
    • 4
  • Jong Min Song
    • 4
  • Duk Hyun Kang
    • 4
  • Jae Kwan Song
    • 4
  • Young Hak Kim
    • 4
  • Namkug Kim
    • 2
    • 6
  • Dong Hyun Yang
    • 2
    Email author
  1. 1.POSTECH Biotech CenterPohang University of Science and TechnologyPohangSouth Korea
  2. 2.Department of Radiology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
  3. 3.Asan Institute of Life ScienceSeoulSouth Korea
  4. 4.Department of Cardiology, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea
  5. 5.Department of Mechanical EngineeringPohang University of Science and TechnologyPohangSouth Korea
  6. 6.Department of Convergence Medicine, Asan Medical CenterUniversity of Ulsan College of MedicineSeoulSouth Korea

Personalised recommendations