The International Journal of Cardiovascular Imaging

, Volume 33, Issue 11, pp 1693–1701 | Cite as

Dynamic changes in aortic impedance after transcatheter aortic valve replacement and its impact on exploratory outcome

  • Yukari Kobayashi
  • Juyong B. Kim
  • Kegan J. Moneghetti
  • Yuhei Kobayashi
  • Ran Zhang
  • Daniel A. Brenner
  • Ryan O’Malley
  • Ingela Schnittger
  • Michael Fischbein
  • D. Craig Miller
  • Alan C. Yeung
  • David Liang
  • Francois Haddad
  • William F. Fearon
Original Paper

Abstract

Valvulo-arterial impedance (Zva) has been shown to predict worse outcome in medically managed aortic stenosis (AS) patients. We aimed to investigate the association between Zva and left ventricular (LV) adaptation and to explore the predictive value of Zva for cardiac functional recovery and outcome after transcatheter aortic valve replacement (TAVR). We prospectively enrolled 128 patients with AS who underwent TAVR. Zva was calculated as: (systolic blood pressure + mean transaortic gradient)/stroke volume index). Echocardiographic assessment occurred at baseline, 1-month and 1-year after TAVR. The primary endpoints were to investigate associations between Zva and global longitudinal strain (GLS) at baseline as well as GLS change after TAVR. The secondary was to compare all-cause mortality after TAVR between patients with pre-defined Zva (=5 mmHg m2/ml), stroke volume index (=35 ml/m2), and GLS (=−15%) cutoffs. The mean GLS was reduced (−13.0 ± 3.2%). The mean Zva was 5.2 ± 1.6 mmHg*m2/ml with 55% of values ≥5.0 mmHg*m2/ml, considered to be abnormally high. Higher Zva correlated with worse GLS (r = −0.33, p < 0.001). After TAVR, Zva decreased significantly (5.1 ± 1.6 vs. 4.5 ± 1.6 mmHg*m2/ml, p = 0.001). A reduction of Zva at 1-month was associated with GLS improvement at 1-month (r = −0.31, p = 0.001) and at 1-year (r = −0.36 and p = 0.001). By Kaplan–Meier analysis, patients with higher Zva at baseline had higher mortality (Log-rank p = 0.046), while stroke volume index and GLS did not differentiate outcome (Log-rank p = 0.09 and 0.25, respectively). As a conclusion, Zva is correlated with GLS in AS as well as GLS improvement after TAVR. Furthermore, a high baseline Zva may have an additional impact to traditional parameters on predicting worse mortality after TAVR.

Keywords

Transcatheter aortic valve replacement Ventricular impedance Strain imaging 

Abbreviations

AS

Aortic stenosis

AVAI

Aortic valve area index

EF

Ejection fraction

GLS

Global longitudinal strain

LA

Left atrial

LV

Left ventricular

TAVR

Transcatheter aortic valve replacement

Zva

Valvulo-arterial impedance

Notes

Acknowledgements

We want to thank Stanford Cardiovascular Institute, and Pai Chan Lee Research Fund (FH) for their support.

Funding

NHLBI RO1 HL67025 (DCM), Stanford Cardiovascular Institute, Translational Research and Applied Medicine (JBK, FH, WFF) and Women’s Sex-Difference in Medicine Grant (YK, JBK, ROM, FH, WFF) from the Stanford Department of Medicine, and Pai Chan Lee Research Fund (FH).

Disclosure

DCM works as a Stanford PI (PARTNER Trials, Edwards Lifesciences; SURTAVI Trial, Medtronic) and has served as an Executive Committee for Edwards Lifesciences (PARTNER U.S. Pivotal Trial) and consultant for Medtronic.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Leon MB, Smith CR, Mack M, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Brown DL, Block PC, Guyton RA, Pichard AD, Bavaria JE, Herrmann HC, Douglas PS, Petersen JL, Akin JJ, Anderson WN, Wang D, Pocock S, Investigators PT (2010) Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med 363:1597–1607CrossRefPubMedGoogle Scholar
  2. 2.
    Smith CR, Leon MB, Mack MJ, Miller DC, Moses JW, Svensson LG, Tuzcu EM, Webb JG, Fontana GP, Makkar RR, Williams M, Dewey T, Kapadia S, Babaliaros V, Thourani VH, Corso P, Pichard AD, Bavaria JE, Herrmann HC, Akin JJ, Anderson WN, Wang D, Pocock SJ, Investigators PT (2011) Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med 364:2187–2198CrossRefPubMedGoogle Scholar
  3. 3.
    Popma JJ, Adams DH, Reardon MJ, Yakubov SJ, Kleiman NS, Heimansohn D, Hermiller J Jr, Hughes GC, Harrison JK, Coselli J, Diez J, Kafi A, Schreiber T, Gleason TG, Conte J, Buchbinder M, Deeb GM, Carabello B, Serruys PW, Chenoweth S, Oh JK, CoreValve United States Clinical I (2014) Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J Am Coll Cardiol 63:1972–1981CrossRefPubMedGoogle Scholar
  4. 4.
    Kapadia SR, Leon MB, Makkar RR, Tuzcu EM, Svensson LG, Kodali S, Webb JG, Mack MJ, Douglas PS, Thourani VH, Babaliaros VC, Herrmann HC, Szeto WY, Pichard AD, Williams MR, Fontana GP, Miller DC, Anderson WN, Akin JJ, Davidson MJ, Smith CR, Investigators PT (2015) 5-year outcomes of transcatheter aortic valve replacement compared with standard treatment for patients with inoperable aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 385:2485–2491CrossRefPubMedGoogle Scholar
  5. 5.
    Mack MJ, Leon MB, Smith CR, Miller DC, Moses JW, Tuzcu EM, Webb JG, Douglas PS, Anderson WN, Blackstone EH, Kodali SK, Makkar RR, Fontana GP, Kapadia S, Bavaria J, Hahn RT, Thourani VH, Babaliaros V, Pichard A, Herrmann HC, Brown DL, Williams M, Akin J, Davidson MJ, Svensson LG, investigators Pt (2015) 5-year outcomes of transcatheter aortic valve replacement or surgical aortic valve replacement for high surgical risk patients with aortic stenosis (PARTNER 1): a randomised controlled trial. Lancet 385:2477–2484CrossRefPubMedGoogle Scholar
  6. 6.
    Adams DH, Popma JJ, Reardon MJ, Yakubov SJ, Coselli JS, Deeb GM, Gleason TG, Buchbinder M, Hermiller J Jr, Kleiman NS, Chetcuti S, Heiser J, Merhi W, Zorn G, Tadros P, Robinson N, Petrossian G, Hughes GC, Harrison JK, Conte J, Maini B, Mumtaz M, Chenoweth S, Oh JK, Investigators USCC (2014) Transcatheter aortic-valve replacement with a self-expanding prosthesis. N Engl J Med 370:1790–1798CrossRefPubMedGoogle Scholar
  7. 7.
    Thourani VH, Kodali S, Makkar RR, Herrmann HC, Williams M, Babaliaros V, Smalling R, Lim S, Malaisrie SC, Kapadia S, Szeto WY, Greason KL, Kereiakes D, Ailawadi G, Whisenant BK, Devireddy C, Leipsic J, Hahn RT, Pibarot P, Weissman NJ, Jaber WA, Cohen DJ, Suri R, Tuzcu EM, Svensson LG, Webb JG, Moses JW, Mack MJ, Miller DC, Smith CR, Alu MC, Parvataneni R, D’Agostino RB Jr, Leon MB (2016) Transcatheter aortic valve replacement versus surgical valve replacement in intermediate-risk patients: a propensity score analysis. Lancet 387:2218–2225CrossRefPubMedGoogle Scholar
  8. 8.
    Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, Iung B, Otto CM, Pellikka PA, Quinones M (2009) and Eae/Ase. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. Eur J Echocardiogr 10:1–25CrossRefPubMedGoogle Scholar
  9. 9.
    Briand M, Dumesnil JG, Kadem L, Tongue AG, Rieu R, Garcia D, Pibarot P (2005) Reduced systemic arterial compliance impacts significantly on left ventricular afterload and function in aortic stenosis: implications for diagnosis and treatment. J Am Coll Cardiol 46:291–298CrossRefPubMedGoogle Scholar
  10. 10.
    Lancellotti P, Donal E, Magne J, O’Connor K, Moonen ML, Cosyns B, Pierard LA (2010) Impact of global left ventricular afterload on left ventricular function in asymptomatic severe aortic stenosis: a two-dimensional speckle-tracking study. Eur J Echocardiogr 11:537–543CrossRefPubMedGoogle Scholar
  11. 11.
    Lancellotti P, Donal E, Magne J, Moonen M, O’Connor K, Daubert JC, Pierard LA (2010) Risk stratification in asymptomatic moderate to severe aortic stenosis: the importance of the valvular, arterial and ventricular interplay. Heart 96:1364–1371CrossRefPubMedGoogle Scholar
  12. 12.
    Hachicha Z, Dumesnil JG, Pibarot P (2009) Usefulness of the valvuloarterial impedance to predict adverse outcome in asymptomatic aortic stenosis. J Am Coll Cardiol 54:1003–1011CrossRefPubMedGoogle Scholar
  13. 13.
    Shibayama K, Daimon M, Watanabe H, Kawata T, Miyazaki S, Morimoto-Ichikawa R, Maruyama M, Chiang SJ, Miyauchi K, Daida H (2016) Significance of coronary artery disease and left ventricular afterload in unoperated asymptomatic aortic stenosis. Circ J 80:519–525CrossRefPubMedGoogle Scholar
  14. 14.
    Clavel MA, Dumesnil JG, Capoulade R, Mathieu P, Senechal M, Pibarot P (2012) Outcome of patients with aortic stenosis, small valve area, and low-flow, low-gradient despite preserved left ventricular ejection fraction. J Am Coll Cardiol 60:1259–1267CrossRefPubMedGoogle Scholar
  15. 15.
    Yingchoncharoen T, Gibby C, Rodriguez LL, Grimm RA, Marwick TH (2012) Association of myocardial deformation with outcome in asymptomatic aortic stenosis with normal ejection fraction. Circ Cardiovasc Imaging 5:719–725CrossRefPubMedGoogle Scholar
  16. 16.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L, Flachskampf FA, Foster E, Goldstein SA, Kuznetsova T, Lancellotti P, Muraru D, Picard MH, Rietzschel ER, Rudski L, Spencer KT, Tsang W, Voigt JU (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr 28:1–39CrossRefPubMedGoogle Scholar
  17. 17.
    Skjaerpe T, Hegrenaes L, Hatle L (1985) Noninvasive estimation of valve area in patients with aortic stenosis by Doppler ultrasound and two-dimensional echocardiography. Circulation 72:810–818CrossRefPubMedGoogle Scholar
  18. 18.
    Spuentrup E, Buecker A, Katoh M, Wiethoff AJ, Parsons EC Jr, Botnar RM, Weisskoff RM, Graham PB, Manning WJ, Gunther RW (2005) Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation 111:1377–1382CrossRefPubMedGoogle Scholar
  19. 19.
    Lancellotti P, Karsera D, Tumminello G, Lebois F, Pierard LA (2008) Determinants of an abnormal response to exercise in patients with asymptomatic valvular aortic stenosis. Eur J Echocardiogr 9:338–343PubMedGoogle Scholar
  20. 20.
    Kobayashi Y, Ariyama M, Kobayashi Y, Giraldeau G, Fleischman D, Kozelj M, Vrtovec B, Ashley E, Kuznetsova T, Schnittger I, Liang D, Haddad F (2016) Comparison of left ventricular manual versus automated derived longitudinal strain: implications for clinical practice and research. Int J Cardiovasc Imaging 32:429–437CrossRefPubMedGoogle Scholar
  21. 21.
    Dumesnil JG, Shoucri RM, Laurenceau JL, Turcot J (1979) A mathematical model of the dynamic geometry of the intact left ventricle and its application to clinical data. Circulation 59:1024–1034CrossRefPubMedGoogle Scholar
  22. 22.
    Baumgartner H, Hung J, Bermejo J, Chambers JB, Evangelista A, Griffin BP, Iung B, Otto CM, Pellikka PA, Quinones M, American Society of E and European Association of E (2009) Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr 22:1–23 quiz 101-2 CrossRefPubMedGoogle Scholar
  23. 23.
    American College of Cardiology/American Heart Association Task Force on Practice G, Society of Cardiovascular A, Society for Cardiovascular A, Interventions, Society of Thoracic S, Bonow RO, Carabello BA, Kanu C, de Leon AC Jr, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O’Gara PT, O’Rourke RA, Otto CM, Shah PM, Shanewise JS, Smith SC Jr, Jacobs AK, Adams CD, Anderson JL, Antman EM, Faxon DP, Fuster V, Halperin JL, Hiratzka LF, Hunt SA, Lytle BW, Nishimura R, Page RL, Riegel B (2006) ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (writing committee to revise the 1998 Guidelines for the management of patients with valvular heart disease): developed in collaboration with the society of cardiovascular anesthesiologists: endorsed by the society for cardiovascular angiography and interventions and the society of thoracic surgeons. Circulation 114:e84–231CrossRefGoogle Scholar
  24. 24.
    Vahanian A, Baumgartner H, Bax J, Butchart E, Dion R, Filippatos G, Flachskampf F, Hall R, Iung B, Kasprzak J, Nataf P, Tornos P, Torracca L, Wenink A, Task Force on the Management of Valvular Hearth Disease of the European Society of C and Guidelines ESCCfP (2007) Guidelines on the management of valvular heart disease: the task force on the management of valvular heart disease of the European Society of Cardiology. Eur Heart J 28:230–268PubMedGoogle Scholar
  25. 25.
    Hachicha Z, Dumesnil JG, Bogaty P, Pibarot P (2007) Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 115:2856–2864CrossRefPubMedGoogle Scholar
  26. 26.
    Green P, Woglom AE, Genereux P, Daneault B, Paradis JM, Schnell S, Hawkey M, Maurer MS, Kirtane AJ, Kodali S, Moses JW, Leon MB, Smith CR, Williams M (2012) The impact of frailty status on survival after transcatheter aortic valve replacement in older adults with severe aortic stenosis: a single-center experience. JACC Cardiovasc Interv 5:974–981CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Marwick TH, Leano RL, Brown J, Sun JP, Hoffmann R, Lysyansky P, Becker M, Thomas JD (2009) Myocardial strain measurement with 2-dimensional speckle-tracking echocardiography: definition of normal range. JACC Cardiovasc Imaging 2:80–84CrossRefPubMedGoogle Scholar
  28. 28.
    Pibarot P, Dumesnil JG (2007) Assessment of aortic stenosis severity: check the valve but don’t forget the arteries! Heart 93:780–782CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Giannini C, Petronio AS, De Carlo M, Guarracino F, Benedetti G, Delle Donne MG, Dini FL, Marzilli M, Di Bello V (2012) The incremental value of valvuloarterial impedance in evaluating the results of transcatheter aortic valve implantation in symptomatic aortic stenosis. J Am Soc Echocardiogr 25:444–453CrossRefPubMedGoogle Scholar
  30. 30.
    Katsanos S, Yiu KH, Clavel MA, Rodes-Cabau J, Leong D, van der Kley F, Ajmone Marsan N, Bax JJ, Pibarot P, Delgado V (2013) Impact of valvuloarterial impedance on 2-year outcome of patients undergoing transcatheter aortic valve implantation. J Am Soc Echocardiogr 26:691–698CrossRefPubMedGoogle Scholar
  31. 31.
    Mehrotra P, Jansen K, Flynn AW, Tan TC, Elmariah S, Picard MH, Hung J (2013) Differential left ventricular remodelling and longitudinal function distinguishes low flow from normal-flow preserved ejection fraction low-gradient severe aortic stenosis. Eur Heart J 34:1906–1914CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Le Ven F, Freeman M, Webb J, Clavel MA, Wheeler M, Dumont E, Thompson C, De Larochelliere R, Moss R, Doyle D, Ribeiro HB, Urena M, Nombela-Franco L, Rodes-Cabau J, Pibarot P (2013) Impact of low flow on the outcome of high-risk patients undergoing transcatheter aortic valve replacement. J Am Coll Cardiol 62:782–788CrossRefPubMedGoogle Scholar
  33. 33.
    Aurigemma GP, Gaasch WH (1995) Gender differences in older patients with pressure-overload hypertrophy of the left ventricle. Cardiology 86:310–317CrossRefPubMedGoogle Scholar
  34. 34.
    Carroll JD, Carroll EP, Feldman T, Ward DM, Lang RM, McGaughey D, Karp RB (1992) Sex-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation 86:1099–1107CrossRefPubMedGoogle Scholar
  35. 35.
    Kararigas G, Dworatzek E, Petrov G, Summer H, Schulze TM, Baczko I, Knosalla C, Golz S, Hetzer R, Regitz-Zagrosek V (2014) Sex-dependent regulation of fibrosis and inflammation in human left ventricular remodelling under pressure overload. Eur J Heart Fail 16:1160–1167CrossRefPubMedGoogle Scholar
  36. 36.
    Laskey WK, Kussmaul WG, Noordergraaf A (1995) Valvular and systemic arterial hemodynamics in aortic valve stenosis. A model-based approach. Circulation 92:1473–1478CrossRefPubMedGoogle Scholar
  37. 37.
    Ando T, Holmes AA, Taub CC, DeRose JJ, Slovut DP (2015) Does the transapical approach impair early recovery of systolic strain following transcatheter aortic valve replacement? Am J Cardiovasc Dis 5:110–118PubMedPubMedCentralGoogle Scholar
  38. 38.
    Logstrup BB, Andersen HR, Thuesen L, Christiansen EH, Terp K, Klaaborg KE, Poulsen SH (2013) Left ventricular global systolic longitudinal deformation and prognosis 1 year after femoral and apical transcatheter aortic valve implantation. J Am Soc Echocardiogr 26:246–254CrossRefPubMedGoogle Scholar
  39. 39.
    Garcia D, Dumesnil JG, Durand LG, Kadem L, Pibarot P (2003) Discrepancies between catheter and Doppler estimates of valve effective orifice area can be predicted from the pressure recovery phenomenon: practical implications with regard to quantification of aortic stenosis severity. J Am Coll Cardiol 41:435–442CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Yukari Kobayashi
    • 1
    • 2
  • Juyong B. Kim
    • 1
    • 2
  • Kegan J. Moneghetti
    • 1
    • 2
  • Yuhei Kobayashi
    • 1
    • 2
  • Ran Zhang
    • 1
    • 2
  • Daniel A. Brenner
    • 1
    • 2
    • 3
  • Ryan O’Malley
    • 1
    • 2
  • Ingela Schnittger
    • 1
    • 2
  • Michael Fischbein
    • 1
    • 2
  • D. Craig Miller
    • 1
    • 2
  • Alan C. Yeung
    • 1
    • 2
  • David Liang
    • 1
    • 2
  • Francois Haddad
    • 1
    • 2
  • William F. Fearon
    • 1
    • 2
  1. 1.Division of Cardiovascular MedicineStanford University School of MedicineStanfordUSA
  2. 2.Stanford Cardiovascular InstituteStanfordUSA
  3. 3.Kaiser Permanente, Hawaii Region, Moanalua Medical CenterHonoluluUSA

Personalised recommendations