Advertisement

The International Journal of Cardiovascular Imaging

, Volume 33, Issue 9, pp 1341–1349 | Cite as

Improving on the diagnostic characteristics of echocardiography for pulmonary hypertension

  • Kathleen Broderick-Forsgren
  • Clemontina A. Davenport
  • Joseph A. Sivak
  • Charles William Hargett
  • Michael C. Foster
  • Andrew Monteagudo
  • Alicia Armour
  • Sudarshan Rajagopal
  • Kristine Arges
  • Eric J. Velazquez
  • Zainab Samad
Original Paper

Abstract

This retrospective study evaluated the diagnostic characteristics of a combination of echocardiographic parameters for pulmonary hypertension (PH). Right ventricular systolic pressure (RVSP) estimation by echocardiography (echo) is used to screen for PH. However, the sensitivity of this method is suboptimal. We hypothesized that RVSP estimation in conjunction with other echo parameters would improve the value of echo for PH. The Duke Echo database was queried for adult patients with known or suspected PH who had undergone both echo and right heart catheterization (RHC) within a 24 h period between 1/1/2008 and 12/31/2013. Patients with complex congenital heart disease, heart transplantation, ventricular assist device, or on mechanical ventilation at time of study were excluded. Diagnostic characteristics of several echo parameters (right atrial enlargement, pulmonary artery (PA) enlargement, RV enlargement, RV dysfunction, and RVSP) for PH (mean PA pressure 25 mmHg on RHC) were evaluated among 1007 patients. RVSP ≥40 had a sensitivity of 77% (accuracy 77), while RVSP ≥35 had the highest sensitivity at 88% (81% accuracy). PA enlargement had the lowest sensitivity at 17%. The area under the curve (AUC) for RVSP was 0.844. A model including RVSP, RA, PA, RV enlargement and RV dysfunction had a higher AUC (AUC = 0.87) than RVSP alone. The value of echo as a screening test for PH is improved by a model incorporating a lower RVSP in addition to other right heart parameters. These findings need to be validated in prospective cohorts.

Keywords

Diagnostic characteristics Echocardiogram Pulmonary hypertension Right ventricular systolic pressure (RVSP) 

Abbreviations

ASE

American Society of Echocardiography

AUC

Area under the curve

LA

Atrium

PA

Pulmonary artery

PH

Pulmonary hypertension

RA

Right atrial

RHC

Right heart catheterization

RV

Right ventricle

RVSP

Right ventricular systolic pressure

TTE

Transthoracic echocardiography

TAPSE

Tricuspid annular plane systolic excursion

Notes

Acknowledgements

This work was supported internally by a Duke Resident Research Award.

Funding

Broderick-Forsgren: none; Dr. Davenport has research grant support from Duke CTSA (UL1TR001117)., Sivak: none; Hargett: none; Foster: none; Monteagudo: none; Armour: none; Rajagopal: Research grants from NHLBI (NIHKO8), Gilead, Burroughs-Wellcome Trust; Advisory board: Gilead; Arges: none; Velazquez: Research grants from NHLBI, Ikaria Pharmaceuticals, Consulting Fees/Honoraria: Novartis Pharmaceuticals Corp., Research grants for NIH and Abbott-Vascular. He serves as an advisor for Alnylam Incorporated and Novartis; Samad: Research grant support from Gilead, Boston Scientific, NHLBI and American Society of Echocardiography.

Compliance with ethical standards

Conflict of interest

Dr. Broderick-Forsgren, Dr. Sivak, Dr. Hargett, Mr. Foster, Mr. Monteagudo, Dr. Rajagopal, and Ms. Arges have no relevant conflicts of interest to report.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. For this type of study formal consent is not required.

References

  1. 1.
    Hyduk A, Croft JB, Ayala C et al (2005) Pulmonary hypertension surveillance: United States, 1980–2002. MMWR Surveill Summ 54:1–28PubMedGoogle Scholar
  2. 2.
    Hoeper MM, Bogaard HJ, Condliffe R et al (2013) Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol 62:D42–D50. doi: 10.1016/j.jacc.2013.10.032 CrossRefPubMedGoogle Scholar
  3. 3.
    Hoeper MM, Lee SH, Voswinckel R et al (2006) Complications of right heart catheterization procedures in patients with pulmonary hypertension in experienced centers. J Am Coll Cardiol 48:2546–2552. doi: 10.1016/j.jacc.2006.07.061 CrossRefPubMedGoogle Scholar
  4. 4.
    Rich JD, Shah SJ, Swamy RS et al (2011) Inaccuracy of Doppler echocardiographic estimates of pulmonary artery pressures in patients with pulmonary hypertension: implications for clinical practice. Chest 139:988–993. doi: 10.1378/chest.10-1269 CrossRefPubMedGoogle Scholar
  5. 5.
    Fisher MR, Forfia PR, Chamera E et al (2009) Accuracy of Doppler echocardiography in the hemodynamic assessment of pulmonary hypertension. Am J Respir Crit Care Med 179:615–621. doi: 10.1164/rccm.200811-1691OC CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Bonderman D, Wexberg P, Martischnig AM et al (2011) A noninvasive algorithm to exclude pre-capillary pulmonary hypertension. Eur Respir J 37:1096–1103. doi: 10.1183/09031936.00089610 CrossRefPubMedGoogle Scholar
  7. 7.
    Bonderman D, Wexberg P, Heinzl H, Lang IM (2012) Non-invasive algorithms for the diagnosis of pulmonary hypertension. Thromb Haemost 108:1037–1041. doi: 10.1160/TH12-04-0239 CrossRefPubMedGoogle Scholar
  8. 8.
    Ersboll M, Schulte PJ, Al Enezi F et al (2015) Predictors and progression of aortic stenosis in patients with preserved left ventricular ejection fraction. Am J Cardiol 115:86–92. doi: 10.1016/j.amjcard.2014.09.049 CrossRefPubMedGoogle Scholar
  9. 9.
    Lang RM, Bierig M, Devereux RB et al (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiograph. J Am Soc Echocardiogr 18:1440–1463. doi: 10.1016/j.echo.2005.10.005 CrossRefPubMedGoogle Scholar
  10. 10.
    Rudski LG, Lai WW, Afilalo J et al (2010) Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and t. J Am Soc Echocardiogr 23:685–688. doi: 10.1016/j.echo.2010.05.010 CrossRefPubMedGoogle Scholar
  11. 11.
    Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B 58:267–288.Google Scholar
  12. 12.
    Friedman J, Hastie T, Tibshirani R (2010) Regularization paths for generalized linear models via coordinate descent. J Stat Softw 33:1–22CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 44:837–845CrossRefPubMedGoogle Scholar
  14. 14.
    Arcasoy SM, Christie JD, Ferrari VA et al (2003) Echocardiographic assessment of pulmonary hypertension in patients with advanced lung disease. Am J Respir Crit Care Med 167:735–740. doi: 10.1164/rccm.200210-1130OC CrossRefPubMedGoogle Scholar
  15. 15.
    Janda S, Shahidi N, Gin K, Swiston J (2011) Diagnostic accuracy of echocardiography for pulmonary hypertension: a systematic review and meta-analysis. Heart 97:612–622. doi: 10.1136/hrt.2010.212084 CrossRefPubMedGoogle Scholar
  16. 16.
    Greiner S, Jud A, Aurich M et al (2014) Reliability of noninvasive assessment of systolic pulmonary artery pressure by Doppler echocardiography compared to right heart catheterization: analysis in a large patient population. J Am Hear Assoc. doi: 10.1161/jaha.114.001103 Google Scholar
  17. 17.
    Lam CS, Borlaug BA, Kane GC et al (2009) Age-associated increases in pulmonary artery systolic pressure in the general population. Circulation 119:2663–2670. doi: 10.1161/circulationaha.108.838698 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Milan A, Magnino C, Veglio F (2010) Echocardiographic indexes for the non-invasive evaluation of pulmonary hemodynamics. J Am Soc Echocardiogr 23:224–225. doi: 10.1016/j.echo.2010.01.003 CrossRefGoogle Scholar
  19. 19.
    Homma A, Anzueto A, Peters JI et al (2001) Pulmonary artery systolic pressures estimated by echocardiogram vs cardiac catheterization in patients awaiting lung transplantation. J Heart Lung Transplant 20:833–839. doi: 10.1016/S1053-2498(01)00274-1 CrossRefPubMedGoogle Scholar
  20. 20.
    McQuillan BM, Picard MH, Leavitt M, Weyman AE (2001) Clinical correlates and reference intervals for pulmonary artery systolic pressure among echocardiographically normal subjects. Circulation 104:2797–2802CrossRefPubMedGoogle Scholar
  21. 21.
    Raymond RJ, Hinderliter AL, Willis PW et al (2002) Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J Am Coll Cardiol 39:1214–1219CrossRefPubMedGoogle Scholar
  22. 22.
    D’Alto M, Romeo E, Argiento P et al (2015) Echocardiographic prediction of pre-versus postcapillary pulmonary hypertension. J Am Soc Echocardiogr 28:108–115. doi: 10.1016/j.echo.2014.09.004 CrossRefPubMedGoogle Scholar
  23. 23.
    Opotowsky AR, Ojeda J, Rogers F et al (2012) A simple echocardiographic prediction rule for hemodynamics in pulmonary hypertension. Circ Cardiovasc Imaging 5:765–775. doi: 10.1161/circimaging.112.976654 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Zisman DA, Karlamangla AS, Kawut SM et al (2008) Validation of a method to screen for pulmonary hypertension in advanced idiopathic pulmonary fibrosis. Chest 133:640–645. doi: 10.1378/chest.07-2488 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Granstam SO, Bjorklund E, Wikstrom G, Roos MW (2013) Use of echocardiographic pulmonary acceleration time and estimated vascular resistance for the evaluation of possible pulmonary hypertension. Cardiovasc Ultrasound 11:7. doi: 10.1186/1476-7120-11-7 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kittipovanonth M, Bellavia D, Chandrasekaran K et al (2008) Doppler myocardial imaging for early detection of right ventricular dysfunction in patients with pulmonary hypertension. J Am Soc Echocardiogr 21:1035–1041. doi: 10.1016/j.echo.2008.07.002 CrossRefPubMedGoogle Scholar
  27. 27.
    Lopez-Candales A, Rajagopalan N, Dohi K et al (2007) Abnormal right ventricular myocardial strain generation in mild pulmonary hypertension. Echocardiography 24:615–622. doi: 10.1111/j.1540-8175.2007.00439.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Kathleen Broderick-Forsgren
    • 1
  • Clemontina A. Davenport
    • 2
  • Joseph A. Sivak
    • 3
  • Charles William Hargett
    • 4
  • Michael C. Foster
    • 5
  • Andrew Monteagudo
    • 5
  • Alicia Armour
    • 5
  • Sudarshan Rajagopal
    • 3
  • Kristine Arges
    • 5
  • Eric J. Velazquez
    • 3
    • 5
  • Zainab Samad
    • 3
    • 5
  1. 1.Duke Medicine Residency Program, Department of MedicineDuke University HospitalDurhamUSA
  2. 2.Department of Biostatistics and BioinformaticsDuke University Medical CenterDurhamUSA
  3. 3.Division of Cardiology, Department of MedicineDuke University Medical CenterDurhamUSA
  4. 4.Division of Pulmonary, Allergy, and Critical Care MedicineDuke University Medical CenterDurhamUSA
  5. 5.Cardiac Diagnostic UnitDuke University Medical CenterDurhamUSA

Personalised recommendations