Neointimal response to everolimus-eluting bioresorbable scaffolds implanted at bifurcating coronary segments: insights from optical coherence tomography

  • Takao Sato
  • John Jose
  • Mohamed El-Mawardy
  • Dmitriy S. Sulimov
  • Ralph Tölg
  • Gert Richardt
  • Mohamed Abdel-WahabEmail author
Original Paper


Heterogeneity of neointimal thickness is observed after drug-eluting stents implantation in bifurcation lesions (BL). We evaluated the vascular response of everolimus-eluting bioresorbable scaffold (BRS) struts deployed at BL using optical coherence tomography (OCT). 50 patients (64 scaffolds) underwent follow-up OCT after BRS implantation. Cross-sectional areas of each BL with a side branch more than 1.5 mm were analyzed using OCT every 200 µm. All images were divided into three regions according to shear stress: the 1/2 circumference of the vessel opposite to the ostium (OO), the vessel wall adjacent to the ostium (AO) and the side-branch ostium (SO). The %uncovered strut and the averaged neointimal thickness (NIT) were calculated. Overall, there were significant differences in both NIT and %uncovered strut among the three regions (OO, 119.2 ± 68.5 μm vs. AO, 94.2 ± 35.7 μm vs. SO, 80.5 ± 41.4 μm, p = 0.03; OO, 0.4 %vs. AO, 1.4 %vs. SO, 4.8 %, p = 0.02). Scaffolds were divided into two groups: a large-ratio side-branch group (LRSB; n = 32) and a small-ratio side-branch group (SRSB; n = 32), based on the median value of the ratio of the diameter of side branch ostium (Ds) to that of the main branch (Dm). In the LRSB alone, there were significant differences in both NIT and %uncovered strut among the three regions (OO, 128.0 ± 61.1 μm vs. AO, 97.3 ± 34.3 μm vs. SO, 75.9 ± 39.4 μm, p < 0.01; OO, 0.3 % vs. AO, 2.3 % vs. SO, 8.7 %, p < 0.01). After BRS implantation in BL, neointimal response was pronounced at the vessel wall opposite to the side branch ostium, especially in those with large side branches.


Bifurcation Neointimal response Bioresorbable scaffold 


Compliance with ethical standards

Conflict of interest

The authors declare that there was no funding nor any other conflicts of interest related to this work.


  1. 1.
    Farb A, Heller PF, Shroff S, Cheng L, Kolodgie FD, Carter AJ et al (2001) Pathological analysis of local delivery of paclitaxel via a polymer-coated stent. Circulation 104:473–479CrossRefPubMedGoogle Scholar
  2. 2.
    Farb AM, Burke APM, Kolodgie FDP, Virmani RM (2003) Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation 108:1701–1706CrossRefPubMedGoogle Scholar
  3. 3.
    Virmani R, Guagliumi G, Farb A, Musumeci G, Grieco N, Motta T et al (2004) Localized hypersensitivity and late coronary thrombosis secondary to a sirolimus-eluting stent: should we be cautious? Circulation 109:701–705CrossRefPubMedGoogle Scholar
  4. 4.
    Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E et al (2006) Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 48:193–202CrossRefPubMedGoogle Scholar
  5. 5.
    Finn AV, Joner M, Nakazawa G, Kolodgie F, Newell J, John MC et al (2007) Pathological correlates of late drug-eluting stent thrombosis thrombosis: strut coverage as a marker of endothelialization. Circulation 115:2435–2441CrossRefPubMedGoogle Scholar
  6. 6.
    Iakovou I, Schmidt T, Bonizzoni E, Ge L, Sangiorgi GM, Stankovic G et al (2005) Incidence, predictors, and outcome of thrombosis after successful implantation of drug-eluting stents. JAMA 293:2126–2130CrossRefPubMedGoogle Scholar
  7. 7.
    Nakazawa G, Yazdani SK, Finn AV, Vorpahl M, Kolodgie FD, Virmani R (2010) Pathological findings at bifurcation lesions: the impact of flow distribution on atherosclerosis and arterial healin after stent implantation. J Am Coll Cardiol 55:1679–1687CrossRefPubMedGoogle Scholar
  8. 8.
    Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042CrossRefPubMedGoogle Scholar
  9. 9.
    Asakura T, Karino T (1990) Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66:1045–1066CrossRefPubMedGoogle Scholar
  10. 10.
    Onuma Y, Serruys PW, Perkins LE, Okamura T, Gonzalo N, García-García HM et al (2010) Intracoronary optical coherence tomography and histology at 1 month and 2, 3, and 4 years after implantation of everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: an attempt to decipher the human optical coherence tomography images in the ABSORB trial. Circulation 122:2288–2300CrossRefPubMedGoogle Scholar
  11. 11.
    Bourantas CV, Papafaklis MI, Kotsia A, Farooq V, Muramatsu T, Gomez-Lara J et al (2014) Effect of the endothelial shear stress patterns on neointimal proliferation following drug-eluting bioresorbable vascular scaffold implantation: an optical coherence tomography study. JACC Cardiovasc Interv 7:315–324CrossRefPubMedGoogle Scholar
  12. 12.
    Yoshimura T, Tanaka A, Mori N, Nakamura D, Taniike M, Makino N et al (2014) Difference of neointimal growth patterns in bifurcation lesions among four kinds of drug-eluting stents: an optical coherence tomographic study. Catheter Cardiovasc Interv 84:742–749CrossRefPubMedGoogle Scholar
  13. 13.
    Kyono H, Guagliumi G, Sirbu V, Rosenthal N, Tahara S, Musumeci G et al (2010) Optical coherence tomography (OCT) strut-level analysis of drug-eluting stents (DES) in human coronary bifurcations. EuroIntervention 6:69–77CrossRefPubMedGoogle Scholar
  14. 14.
    Gutiérrez-Chico JL, Gijsen F, Regar E, Wentzel J, de Bruyne B, Thuesen L et al (2012) Differences in neointimal thickness between the adluminal and the abluminal sides of malapposed and side-branch struts in a polylactide bioresorbable scaffold: evidence in vivo about the abluminal healing process. JACC Cardiovasc Interv 5:428–435CrossRefPubMedGoogle Scholar
  15. 15.
    Farooq V, Serruys PW, Heo JH, Gogas BD, Onuma Y, Perkins LE et al (2013) Intracoronary optical coherence tomography and histology of overlapping everolimus-eluting bioresorbable vascular scaffolds in a porcine coronary artery model: the potential implications for clinical practice. JACC Cardiovasc Interv 6:523–532CrossRefPubMedGoogle Scholar
  16. 16.
    Nakatani S, Sotomi Y, Ishibashi Y, Grundeken MJ, Tateishi H, Tenekecioglu E et al (2015) Comparative analysis method of permanent metallic stents (XIENCE) and bioresorbable poly-l-lactic (PLLA) scaffolds (Absorb) on optical coherence tomography at baseline and follow-up. EuroIntervention 11. doi: 10.4244/EIJY15M10_03
  17. 17.
    Liu Y, Imanishi T, Kubo T, Tanaka A, Kitabata H, Tanimoto T et al (2011) Assessment by optical coherence tomography of stent struts across side branch. -Comparison of bare-metal stents and drug-elution stents. Circ J 75:106–112CrossRefPubMedGoogle Scholar
  18. 18.
    Papafaklis MI, Bourantas CV, Theodorakis PE, Katsouras CS, Naka KK, Fotiadis DI et al (2010) The effect of shear stress on neointimal response following sirolimus- and paclitaxel-eluting stent implantation compared with baremetal stents in humans. JACC Cardiovasc Interv 3:1181–1189CrossRefPubMedGoogle Scholar
  19. 19.
    McDaniel MC, Samady H (2011) The sheer stress of straightening the curves: biomechanics of bioabsorbable stents. JACC Cardiovasc Interv 4:800–802CrossRefPubMedGoogle Scholar
  20. 20.
    Gomez-Lara J, Brugaletta S, Farooq V, van Geuns RJ, De Bruyne B, Windecker S et al (2011) Angiographic geometric changes of the lumen arterial wall after bioresorbable vascular scaffolds and metallic platform stents at 1-year follow-up. JACC Cardiovasc Interv 4:789–799CrossRefPubMedGoogle Scholar
  21. 21.
    Kalsho G, Kassab GS (2004) Bifurcation asymmetry of the porcine coronary vasculature and its implications on coronary flow heterogeneity. Am J Physiol Heart Circ Physiol 287:2493–2500CrossRefGoogle Scholar
  22. 22.
    Kim JS, Jang IK, Kim TH, Takano M, Kume T, Hur NW et al (2009) Optical coherence tomography evaluation of zotarolimus-eluting stents at 9-month follow-up: comparison with sirolimus-eluting stents. Heart 95:1907–1912CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Inoue T, Shite J, Yoon J, Shinke T, Otake H, Sawada T et al (2011) Optical coherence evaluation of everolimuseluting stents 8 months after implantation. Heart 97:1379–1384CrossRefPubMedGoogle Scholar
  24. 24.
    Her AY, Lee BK, Shim JM, Kim JS, Kim BK, Ko YG et al (2010) Neointimal coverage on drug-eluting stent struts crossing side-branch vessels using optical coherence tomography. Am J Cardiol 105:1565–1569CrossRefPubMedGoogle Scholar
  25. 25.
    Sato K, Panoulas VF, Kawamoto H, Naganuma T, Miyazaki T, Latib A et al (2015) Side branch occlusion after bioresorbable vascular scaffold implantation: lessons from optimal coherence tomography. JACC Cardiovasc Interv 8:116–118CrossRefPubMedGoogle Scholar
  26. 26.
    Tamburino C, Latib A, van Geuns RJ, Sabate M, Mehilli J, Gori T et al (2015) Contemporary practice and technical aspects in coronary intervention with bioresorbable scaffolds: a European perspective. EuroIntervention 11:45–52CrossRefPubMedGoogle Scholar
  27. 27.
    Costopoulos C, Latib A, Naganuma T, Miyazaki T, Sato K, Figini F et al. Comparison of early clinical outcomes between ABSORB bioresorbable vascular scaffold and everolimus-eluting stent implantation in a real-world population. Catheter Cardiovasc Interv 2015; 85: doi: 10.1002/ccd.25569

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Takao Sato
    • 1
    • 2
  • John Jose
    • 1
    • 3
  • Mohamed El-Mawardy
    • 1
  • Dmitriy S. Sulimov
    • 1
  • Ralph Tölg
    • 1
  • Gert Richardt
    • 1
  • Mohamed Abdel-Wahab
    • 1
    Email author
  1. 1.Heart Center, Segeberger Kliniken GmbHAcademic Teaching Hospital of the Universities of KielBad SegebergGermany
  2. 2.Department of CardiologyTachikawa General HospitalNagaokaJapan
  3. 3.Department of CardiologyChristian Medical College HospitalVelloreIndia

Personalised recommendations