Advertisement

The International Journal of Cardiovascular Imaging

, Volume 32, Issue 12, pp 1725–1733 | Cite as

Cardiac magnetic resonance and galectin-3 level as predictors of prognostic outcomes for non-ischemic cardiomyopathy patients

  • Da-Jun HuEmail author
  • Jing Xu
  • Wei Du
  • Jian-Xin Zhang
  • Min Zhong
  • Ya-Nan Zhou
Original Paper

Abstract

This study was aimed at determining whether late gadolinium enhancement (LGE) in conjunction with Galectin-3 (Gal-3) level offered more precise prognosis of non-ischemic cardiomyopathy (NICM) in comparison to LGE alone. Results of LGE and Gal-3 expression in 192 patients with NICM, including 85 subjects with dilated cardiomyopathy (DCM) and 107 with hypertrophic cardiomyopathy (HCM), were examined. As suggested by the characteristics of LGE and Gal-3 levels, patients were divided into four groups: LGE positive + low Gal-3 (n = 10 for DCM, n = 15 for HCM), LGE positive + high Gal-3 (n = 25 for DCM, n = 51 for HCM), LGE negative + low Gal-3 (n = 32 for DCM, n = 29 for HCM), LGE negative + high Gal-3 (n = 18 for DCM, n = 12 for HCM). Primary endpoints over the follow-up period included major adverse cardiac events (MACEs). Kaplan–Meier survival analysis and univariate Cox proportional hazard models were used to analyze the survival status of patients with NICM. The optimal cut-off value of Gal-3 level for two types of NICM was determined by receiver operating characteristic analysis (13.38 U/L for DCM and 14.40 U/L for HCM). The combination of LGE and Gal-3 levels offered a more significant prognostic value than using LGE alone for both DCM and HCM (DCM P = 0.001 < 0.012; HCM P = 0.037 < 0.040). Moreover, the Cox proportional hazard model suggested that both LGE status [Hazard ratio (HR) = 2.62, P = 0.017] and Gal-3 level (HR = 1.16, P = 0.013) were significant predictors of MACEs in DCM, while they did not appear to have significant prognostic values for HCM (P = 0.06 and 0.64). Furthermore, the multivariate analysis only confirmed LGE as an independent element in predicting prognosis of DCM (HR = 12.19, P = 0.026). In conclusion, LGE status was an independent indicator of DCM prognosis, yet the insignificant role of LGE in HCM prognosis could be limited by sample size.

Keywords

Late gadolinium enhancement Cardiovascular magnetic resonance Galectin-3 Non-ischemic cardiomyopathy Dilated cardiomyopathy Hypertrophic cardiomyopathy Prognosis Major adverse cardiac events 

Notes

Compliance with ethical standards

Conflict of interest

All Authors have no conflicts of interest to disclose.

References

  1. 1.
    Smith N, Steeds R, Masani N et al (2015) A systematic approach to echocardiography in hypertrophic cardiomyopathy: a guideline protocol from the british society of echocardiography. Echo Res Pract 2:G1–G7. doi: 10.1530/ERP-14-0115 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Khan R, Massel D, Stirrat J et al (2013) Myocardial fibrosis and quality of life in patients with non-ischemic cardiomyopathy: a cardiovascular magnetic resonance imaging study. Int J Cardiovasc Imaging 29:395–404. doi: 10.1007/s10554-012-0107-4 CrossRefPubMedGoogle Scholar
  3. 3.
    Maron BJ, Towbin JA, Thiene G et al (2006) Contemporary definitions and classification of the cardiomyopathies: an american heart association scientific statement from the council on clinical cardiology, heart failure and transplantation committee; quality of care and outcomes research and functional genomics and translational biology interdisciplinary working groups; and council on epidemiology and prevention. Circulation 113:1807–1816. doi: 10.1161/CIRCULATIONAHA.106.174287 CrossRefPubMedGoogle Scholar
  4. 4.
    Basso C, Thiene G, Corrado D et al (2000) Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 31:988–998. doi: 10.1053/hupa.2000.16659 CrossRefPubMedGoogle Scholar
  5. 5.
    Mann DL, Bristow MR (2005) Mechanisms and models in heart failure: the biomechanical model and beyond. Circulation 111:2837–2849. doi: 10.1161/CIRCULATIONAHA.104.500546 CrossRefPubMedGoogle Scholar
  6. 6.
    Masci PG, Schuurman R, Andrea B et al (2013) Myocardial fibrosis as a key determinant of left ventricular remodeling in idiopathic dilated cardiomyopathy: a contrast-enhanced cardiovascular magnetic study. Circ Cardiovasc Imaging 6:790–799. doi: 10.1161/CIRCIMAGING.113.000438 CrossRefPubMedGoogle Scholar
  7. 7.
    Olivotto I, Maron BJ, Appelbaum E et al (2010) Spectrum and clinical significance of systolic function and myocardial fibrosis assessed by cardiovascular magnetic resonance in hypertrophic cardiomyopathy. Am J Cardiol 106:261–267. doi: 10.1016/j.amjcard.2010.03.020 CrossRefPubMedGoogle Scholar
  8. 8.
    Wu TJ, Ong JJ, Hwang C et al (1998) Characteristics of wave fronts during ventricular fibrillation in human hearts with dilated cardiomyopathy: role of increased fibrosis in the generation of reentry. J Am Coll Cardiol 32:187–196CrossRefPubMedGoogle Scholar
  9. 9.
    Pogwizd SM, McKenzie JP, Cain ME (1998) Mechanisms underlying spontaneous and induced ventricular arrhythmias in patients with idiopathic dilated cardiomyopathy. Circulation 98:2404–2414CrossRefPubMedGoogle Scholar
  10. 10.
    Perazzolo Marra M, De Lazzari M, Zorzi A et al (2014) Impact of the presence and amount of myocardial fibrosis by cardiac magnetic resonance on arrhythmic outcome and sudden cardiac death in nonischemic dilated cardiomyopathy. Heart Rhythm 11:856–863. doi: 10.1016/j.hrthm.2014.01.014 CrossRefPubMedGoogle Scholar
  11. 11.
    White JA, Patel MR (2007) The role of cardiovascular mri in heart failure and the cardiomyopathies. Cardiol Clin 25(71–95):vi. doi: 10.1016/j.ccl.2007.02.003 Google Scholar
  12. 12.
    Ahn MS, Kim JB, Joung B et al (2013) Prognostic implications of fragmented qrs and its relationship with delayed contrast-enhanced cardiovascular magnetic resonance imaging in patients with non-ischemic dilated cardiomyopathy. Int J Cardiol 167:1417–1422. doi: 10.1016/j.ijcard.2012.04.064 CrossRefPubMedGoogle Scholar
  13. 13.
    Mewton N, Liu CY, Croisille P et al (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 57:891–903. doi: 10.1016/j.jacc.2010.11.013 CrossRefPubMedGoogle Scholar
  14. 14.
    Bruder O, Wagner A, Jensen CJ et al (2010) Myocardial scar visualized by cardiovascular magnetic resonance imaging predicts major adverse events in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 56:875–887. doi: 10.1016/j.jacc.2010.05.007 CrossRefPubMedGoogle Scholar
  15. 15.
    Masci PG, Barison A, Aquaro GD et al (2012) Myocardial delayed enhancement in paucisymptomatic nonischemic dilated cardiomyopathy. Int J Cardiol 157:43–47. doi: 10.1016/j.ijcard.2010.11.005 CrossRefPubMedGoogle Scholar
  16. 16.
    Lehrke S, Lossnitzer D, Schob M et al (2011) Use of cardiovascular magnetic resonance for risk stratification in chronic heart failure: prognostic value of late gadolinium enhancement in patients with non-ischaemic dilated cardiomyopathy. Heart 97:727–732. doi: 10.1136/hrt.2010.205542 CrossRefPubMedGoogle Scholar
  17. 17.
    Wu KC, Weiss RG, Thiemann DR et al (2008) Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 51:2414–2421. doi: 10.1016/j.jacc.2008.03.018 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Assomull RG, Prasad SK, Lyne J et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985. doi: 10.1016/j.jacc.2006.07.049 CrossRefPubMedGoogle Scholar
  19. 19.
    de Leeuw N, Ruiter DJ, Balk AH et al (2001) Histopathologic findings in explanted heart tissue from patients with end-stage idiopathic dilated cardiomyopathy. Transpl Int 14:299–306CrossRefPubMedGoogle Scholar
  20. 20.
    Sharma UC, Pokharel S, van Brakel TJ et al (2004) Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation 110:3121–3128. doi: 10.1161/01.CIR.0000147181.65298.4D CrossRefPubMedGoogle Scholar
  21. 21.
    Weir RA, Petrie CJ, Murphy CA et al (2013) Galectin-3 and cardiac function in survivors of acute myocardial infarction. Circ Heart Fail 6:492–498. doi: 10.1161/CIRCHEARTFAILURE.112.000146 CrossRefPubMedGoogle Scholar
  22. 22.
    Dumic J, Dabelic S, Flogel M (2006) Galectin-3: an open-ended story. Biochim Biophys Acta 1760:616–635. doi: 10.1016/j.bbagen.2005.12.020 CrossRefPubMedGoogle Scholar
  23. 23.
    Yang RY, Rabinovich GA, Liu FT (2008) Galectins: structure, function and therapeutic potential. Expert Rev Mol Med 10:e17. doi: 10.1017/S1462399408000719 CrossRefPubMedGoogle Scholar
  24. 24.
    Reifenberg K, Lehr HA, Torzewski M et al (2007) Interferon-gamma induces chronic active myocarditis and cardiomyopathy in transgenic mice. Am J Pathol 171:463–472. doi: 10.2353/ajpath.2007.060906 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Thandavarayan RA, Watanabe K, Ma M et al (2008) 14-3-3 protein regulates ask1 signaling and protects against diabetic cardiomyopathy. Biochem Pharmacol 75:1797–1806. doi: 10.1016/j.bcp.2008.02.003 CrossRefPubMedGoogle Scholar
  26. 26.
    de Boer RA, Lok DJ, Jaarsma T et al (2011) Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Ann Med 43:60–68. doi: 10.3109/07853890.2010.538080 CrossRefPubMedGoogle Scholar
  27. 27.
    Lok DJ, Van Der Meer P, de la Porte PW et al (2010) Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol 99:323–328. doi: 10.1007/s00392-010-0125-y CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Lok DJ, Lok SI, Bruggink-Andre de la Porte PW et al (2013) Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clinical Res Cardiol 102:103–110. doi: 10.1007/s00392-012-0500-y CrossRefGoogle Scholar
  29. 29.
    Elliott PM, Anastasakis A, Borger MA et al (2014) [2014 ESC guidelines on diagnosis and management of hypertrophic cardiomyopathy]. Kardiol Pol 72:1054–1126. doi: 10.5603/KP.2014.0212 CrossRefPubMedGoogle Scholar
  30. 30.
    Kim RJ, Shah DJ, Judd RM (2003) How we perform delayed enhancement imaging. J Cardiovasc Magn Reson 5:505–514CrossRefPubMedGoogle Scholar
  31. 31.
    Gao P, Yee R, Gula L et al (2012) Prediction of arrhythmic events in ischemic and dilated cardiomyopathy patients referred for implantable cardiac defibrillator: evaluation of multiple scar quantification measures for late gadolinium enhancement magnetic resonance imaging. Circ Cardiovasc Imaging 5:448–456. doi: 10.1161/CIRCIMAGING.111.971549 CrossRefPubMedGoogle Scholar
  32. 32.
    Morgan RB, Kwong R (2015) Role of cardiac MRI in the assessment of cardiomyopathy. Curr Treat Options Cardiovasc Med 17:53. doi: 10.1007/s11936-015-0410-1 CrossRefPubMedGoogle Scholar
  33. 33.
    Johnston DL, Rokey R, Okada RD (1987) Nuclear magnetic resonance imaging of the cardiovascular system. Herz 12:51–67PubMedGoogle Scholar
  34. 34.
    Masci PG, Schuurman R, Barison A et al (2013) Response to letters regarding article, “myocardial fibrosis as a key determinant of left ventricular remodeling in idiopathic dilated cardiomyopathy: a contrast-enhanced cardiovascular magnetic study”. Circ Cardiovasc Imaging 6:e79. doi: 10.1161/CIRCIMAGING.113.001217 CrossRefPubMedGoogle Scholar
  35. 35.
    Li X, Cai C, Luo R et al (2015) The usefulness of age and sex to predict all-cause mortality in patients with dilated cardiomyopathy: a single-center cohort study. Clin Interv Aging 10:1479–1486. doi: 10.2147/CIA.S88565 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Cheng L, Zhao R, Jin Z et al (2015) Association of genetic polymorphisms on btnl2 with susceptibility to and prognosis of dilated cardiomyopathy in a chinese population. Int J Clin Exp Pathol 8:10488–10499PubMedPubMedCentralGoogle Scholar
  37. 37.
    Ismail TF, Prasad SK, Pennell DJ (2012) Prognostic importance of late gadolinium enhancement cardiovascular magnetic resonance in cardiomyopathy. Heart 98:438–442. doi: 10.1136/heartjnl-2011-300814 CrossRefPubMedGoogle Scholar
  38. 38.
    Rodriguez-Capitan J, Garcia-Pinilla JM, Ruiz-Zamora I et al (2015) Reply to the letter “prognostic value of late gadolinium enhancement in cardiomyopathy: causative risk factor or surrogate marker?” Int J Cardiol 181:102–103. doi: 10.1016/j.ijcard.2014.12.007 CrossRefPubMedGoogle Scholar
  39. 39.
    Rodriguez-Capitan J, Garcia-Pinilla JM, Ruiz-Zamora I et al (2014) Long-term prognostic value of late gadolinium enhancement in a cohort of patients with nonischemic dilated cardiomyopathy. Int J Cardiol 177:17–19. doi: 10.1016/j.ijcard.2014.09.110 CrossRefPubMedGoogle Scholar
  40. 40.
    Vergaro G, Del Franco A, Giannoni A et al (2015) Galectin-3 and myocardial fibrosis in nonischemic dilated cardiomyopathy. Int J Cardiol 184:96–100. doi: 10.1016/j.ijcard.2015.02.008 CrossRefPubMedGoogle Scholar
  41. 41.
    Ise T, Hasegawa T, Morita Y et al (2014) Extensive late gadolinium enhancement on cardiovascular magnetic resonance predicts adverse outcomes and lack of improvement in LV function after steroid therapy in cardiac sarcoidosis. Heart 100:1165–1172. doi: 10.1136/heartjnl-2013-305187 CrossRefPubMedGoogle Scholar
  42. 42.
    Gucuk Ipek E, Akin Suljevic S, Kafes H et al (2015) Evaluation of galectin-3 levels in acute coronary syndrome. Ann Cardiol Angeiol doi: 10.1016/j.ancard.2015.09.046 Google Scholar
  43. 43.
    Yakar Tuluce S, Tuluce K, Cil Z et al (2015) Galectin-3 levels in patients with hypertrophic cardiomyopathy and its relationship with left ventricular mass index and function. Anatol J Cardiol. doi: 10.5152/AnatolJCardiol.2015.6191 Google Scholar
  44. 44.
    Cuspidi C, Tadic M, Sala C (2015) Galectin-3 and hypertensive heart disease. J Clin Hypertens (Greenwich). doi: 10.1111/jch.12756 Google Scholar
  45. 45.
    French B, Wang L, Ky B et al (2015) Prognostic value of galectin-3 for adverse outcomes in chronic heart failure. J Card Fail. doi: 10.1016/j.cardfail.2015.10.022 Google Scholar
  46. 46.
    Guglin M, Verma S (2012) Right side of heart failure. Heart Fail Rev 17:511–527. doi: 10.1007/s10741-011-9272-0 CrossRefPubMedGoogle Scholar
  47. 47.
    Freed BH, Gomberg-Maitland M, Chandra S et al (2012) Late gadolinium enhancement cardiovascular magnetic resonance predicts clinical worsening in patients with pulmonary hypertension. J Cardiovasc Magn Reson 14:11. doi: 10.1186/1532-429X-14-11 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Da-Jun Hu
    • 1
    Email author
  • Jing Xu
    • 1
  • Wei Du
    • 1
  • Jian-Xin Zhang
    • 1
  • Min Zhong
    • 1
  • Ya-Nan Zhou
    • 1
  1. 1.Department of Cardiologythe First Hospital of ChenzhouChenzhouPeople’s Republic of China

Personalised recommendations