Influence of beta-blocker therapy on aortic blood flow in patients with bicuspid aortic valve

  • Bradley D. Allen
  • Michael Markl
  • Alex J. Barker
  • Pim van Ooij
  • James C. Carr
  • S. Chris Malaisrie
  • Patrick McCarthy
  • Robert O. Bonow
  • Preeti Kansal
Original Paper

Abstract

In patients with bicuspid aortic valve (BAV), beta-blockers (BB) are assumed to slow ascending aorta (AAo) dilation by reducing wall shear stress (WSS) on the aneurysmal segment. The aim of this study was to assess differences in AAo peak velocity and WSS in BAV patients with and without BB therapy. BAV patients receiving BB (BB+, n = 30, age: 47 ± 11 years) or not on BB (BB−, n = 30, age: 46 ± 13 years) and healthy controls (n = 15, age: 43 ± 11 years) underwent 4D flow MRI for the assessment of in vivo aortic 3D blood flow. Peak systolic velocities and 3D WSS were calculated at the anterior and posterior walls of the AAo. Both patient groups had higher maximum and mean WSS relative to the control group (p = 0.001 to p = 0.04). WSS was not reduced in the BB+ group compared to BB− patients in the anterior AAo (maximum: 1.49 ± 0.47 vs. 1.38 ± 0.49 N/m2, p = 0.99, mean: 0.76 ± 0.2 vs. 0.74 ± 0.18 N/m2, p = 1.00) or posterior AAo (maximum: 1.45 ± 0.42 vs. 1.39 ± 0.58 N/m2, p = 1.00; mean: 0.65 ± 0.16 vs. 0.63 ± 0.16 N/m2, p = 1.00). AAo peak velocity was elevated in patients compared to controls (p < 0.01) but similar for BB+ and BB− groups (p = 0.42). Linear models identified significant relationships between aortic stenosis severity and increased maximum WSS (β = 0.186, p = 0.007) and between diameter at the sinus of Valsalva and reduced mean WSS (β = −0.151, p = 0.045). Peak velocity and systolic WSS were similar for BAV patients irrespective of BB therapy. Further prospective studies are needed to investigate the impact of dosage and duration of BB therapy on aortic hemodynamics and development of aortopathy.

Keywords

Bicuspid aortic valve Beta blocker 4D flow MRI Aortic dilatation 

References

  1. 1.
    Keane MG, Wiegers SE, Plappert T, Pochettino A, Bavaria JE, Sutton MG (2000) Bicuspid aortic valves are associated with aortic dilatation out of proportion to coexistent valvular lesions. Circulation 102(19 Suppl 3):III35–III39PubMedGoogle Scholar
  2. 2.
    Verma S, Siu SC (2014) Aortic dilatation in patients with bicuspid aortic valve. N Engl J Med 370(20):1920–1929. doi:10.1056/NEJMra1207059 CrossRefPubMedGoogle Scholar
  3. 3.
    Hiratzka LF, Bakris GL, Beckman JA, Bersin RM, Carr VF, Casey DE Jr, Eagle KA, Hermann LK, Isselbacher EM, Kazerooni EA, Kouchoukos NT, Lytle BW, Milewicz DM, Reich DL, Sen S, Shinn JA, Svensson LG, Williams DM (2010) 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons, and Society for Vascular Medicine. Circulation 121(13):e266–e369. doi:10.1161/CIR.0b013e3181d4739e CrossRefPubMedGoogle Scholar
  4. 4.
    Della Corte A, Bancone C, Quarto C, Dialetto G, Covino FE, Scardone M, Caianiello G, Cotrufo M (2007) Predictors of ascending aortic dilatation with bicuspid aortic valve: a wide spectrum of disease expression. Eur J Cardiothorac Surg 31(3):397–404. doi:10.1016/j.ejcts.2006.12.006 (discussion 404–395) CrossRefPubMedGoogle Scholar
  5. 5.
    Tang PC, Coady MA, Lovoulos C, Dardik A, Aslan M, Elefteriades JA, Tellides G (2005) Hyperplastic cellular remodeling of the media in ascending thoracic aortic aneurysms. Circulation 112(8):1098–1105CrossRefPubMedGoogle Scholar
  6. 6.
    Barker AJ, Markl M, Burk J, Lorenz R, Bock J, Bauer S, Schulz-Menger J, von Knobelsdorff-Brenkenhoff F (2012) Bicuspid aortic valve is associated with altered wall shear stress in the ascending aorta. Circ Cardiovasc Imaging 5(4):457–466. doi:10.1161/circimaging.112.973370 CrossRefPubMedGoogle Scholar
  7. 7.
    Fedak PW, Verma S, David TE, Leask RL, Weisel RD, Butany J (2002) Clinical and pathophysiological implications of a bicuspid aortic valve. Circulation 106(8):900–904CrossRefPubMedGoogle Scholar
  8. 8.
    Nistri S, Sorbo MD, Basso C, Thiene G (2002) Bicuspid aortic valve: abnormal aortic elastic properties. J Heart Valve Dis 11(3):369–373 (discussion 373–364) PubMedGoogle Scholar
  9. 9.
    Russo CF, Cannata A, Lanfranconi M, Vitali E, Garatti A, Bonacina E (2008) Is aortic wall degeneration related to bicuspid aortic valve anatomy in patients with valvular disease? J Thorac Cardiovasc Surg 136(4):937–942. doi:10.1016/j.jtcvs.2007.11.072 CrossRefPubMedGoogle Scholar
  10. 10.
    Bissell MM, Hess AT, Biasiolli L, Glaze SJ, Loudon M, Pitcher A, Davis A, Prendergast B, Markl M, Barker AJ, Neubauer S, Myerson SG (2013) Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circ Cardiovasc Imaging 6(4):499–507CrossRefPubMedGoogle Scholar
  11. 11.
    Hope MD, Hope TA, Meadows AK, Ordovas KG, Urbania TH, Alley MT, Higgins CB (2010) Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systolic flow patterns. Radiology 255(1):53–61. doi:10.1148/radiol.09091437 CrossRefPubMedGoogle Scholar
  12. 12.
    Hope MD, Sigovan M, Wrenn SJ, Saloner D, Dyverfeldt P (2014) MRI hemodynamic markers of progressive bicuspid aortic valve-related aortic disease. J Magn Reson Imaging 40(1):140–145. doi:10.1002/jmri.24362 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Mahadevia R, Barker AJ, Schnell S, Entezari P, Kansal P, Fedak PW, Malaisrie SC, McCarthy P, Collins J, Carr J, Markl M (2014) Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 129(6):673–682. doi:10.1161/CIRCULATIONAHA.113.003026 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Meierhofer C, Schneider EP, Lyko C, Hutter A, Martinoff S, Markl M, Hager A, Hess J, Stern H, Fratz S (2013) Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. European heart journal cardiovascular Imaging 14(8):797–804. doi:10.1093/ehjci/jes273 CrossRefPubMedGoogle Scholar
  15. 15.
    Burk J, Blanke P, Stankovic Z, Barker A, Russe M, Geiger J, Frydrychowicz A, Langer M, Markl M (2012) Evaluation of 3D blood flow patterns and wall shear stress in the normal and dilated thoracic aorta using flow-sensitive 4D CMR. J Cardiovasc Magn Reson 14(84):14–84Google Scholar
  16. 16.
    Ben Driss A, Devaux C, Henrion D, Duriez M, Thuillez C, Levy BI, Michel JB (2000) Hemodynamic stresses induce endothelial dysfunction and remodeling of pulmonary artery in experimental compensated heart failure. Circulation 101(23):2764–2770CrossRefPubMedGoogle Scholar
  17. 17.
    Tsao PS, Lewis NP, Alpert S, Cooke JP (1995) Exposure to shear stress alters endothelial adhesiveness. Role of nitric oxide. Circulation 92(12):3513–3519CrossRefPubMedGoogle Scholar
  18. 18.
    Ahimastos AA, Aggarwal A, D’Orsa KM, Formosa MF, White AJ, Savarirayan R, Dart AM, Kingwell BA (2007) Effect of perindopril on large artery stiffness and aortic root diameter in patients with Marfan syndrome: a randomized controlled trial. JAMA 298(13):1539–1547. doi:10.1001/jama.298.13.1539 CrossRefPubMedGoogle Scholar
  19. 19.
    Shores J, Berger KR, Murphy EA, Pyeritz RE (1994) Progression of aortic dilatation and the benefit of long-term beta-adrenergic blockade in Marfan’s syndrome. N Engl J Med 330(19):1335–1341. doi:10.1056/nejm199405123301902 CrossRefPubMedGoogle Scholar
  20. 20.
    Danyi P, Elefteriades JA, Jovin IS (2011) Medical therapy of thoracic aortic aneurysms: are we there yet? Circulation 124(13):1469–1476. doi:10.1161/CIRCULATIONAHA.110.006486 CrossRefPubMedGoogle Scholar
  21. 21.
    Groenink M, de Roos A, Mulder BJ, Spaan JA, van der Wall EE (1998) Changes in aortic distensibility and pulse wave velocity assessed with magnetic resonance imaging following beta-blocker therapy in the Marfan syndrome. Am J Cardiol 82(2):203–208CrossRefPubMedGoogle Scholar
  22. 22.
    Haouzi A, Berglund H, Pelikan PC, Maurer G, Siegel RJ (1997) Heterogeneous aortic response to acute beta-adrenergic blockade in Marfan syndrome. Am Heart J 133(1):60–63CrossRefPubMedGoogle Scholar
  23. 23.
    Baumgartner D, Baumgartner C, Schermer E, Engl G, Schweigmann U, Matyas G, Steinmann B, Stein JI (2006) Different patterns of aortic wall elasticity in patients with Marfan syndrome: a noninvasive follow-up study. J Thorac Cardiovasc Surg 132(4):811–819CrossRefPubMedGoogle Scholar
  24. 24.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM 3rd, Thomas JD (2014) 2014 AHA/ACC Guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 129(23):e521–e643. doi:10.1161/CIR.0000000000000031 CrossRefPubMedGoogle Scholar
  25. 25.
    van Ooij P, Potters WV, Collins J, Carr M, Carr J, Malaisrie SC, Fedak PW, McCarthy PM, Markl M, Barker AJ (2015) Characterization of abnormal wall shear stress using 4D flow MRI in human bicuspid aortopathy. Ann Biomed Eng 43(6):1385–1397. doi:10.1007/s10439-014-1092-7 CrossRefPubMedGoogle Scholar
  26. 26.
    Potters WV, van Ooij P, Marquering H, Vanbavel E, Nederveen AJ (2014) Volumetric arterial wall shear stress calculation based on cine phase contrast MRI. J Magn Reson Imaging. doi:10.1002/jmri.24560 PubMedGoogle Scholar
  27. 27.
    Sievers HH, Schmidtke C (2007) A classification system for the bicuspid aortic valve from 304 surgical specimens. J Thorac Cardiovasc Surg 133(5):1226–1233. doi:10.1016/j.jtcvs.2007.01.039 CrossRefPubMedGoogle Scholar
  28. 28.
    Markl M, Harloff A, Bley TA, Zaitsev M, Jung B, Weigang E, Langer M, Hennig J, Frydrychowicz A (2007) Time-resolved 3D MR velocity mapping at 3T: improved navigator-gated assessment of vascular anatomy and blood flow. J Magn Reson Imaging 25(4):824–831CrossRefPubMedGoogle Scholar
  29. 29.
    Fu BM, Tarbell JM (2013) Mechano-sensing and transduction by endothelial surface glycocalyx: composition, structure, and function. Wiley interdisciplinary reviews Systems biology and medicine 5(3):381–390. doi:10.1002/wsbm.1211 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Bradley D. Allen
    • 1
  • Michael Markl
    • 1
    • 2
  • Alex J. Barker
    • 1
  • Pim van Ooij
    • 1
  • James C. Carr
    • 1
  • S. Chris Malaisrie
    • 3
  • Patrick McCarthy
    • 3
  • Robert O. Bonow
    • 4
  • Preeti Kansal
    • 4
  1. 1.Department of Radiology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA
  2. 2.Department Biomedical Engineering, McCormick School of EngineeringNorthwestern UniversityChicagoUSA
  3. 3.Division of Cardiothoracic SurgeryNorthwestern UniversityChicagoUSA
  4. 4.Department of Medicine - Cardiology, Feinberg School of MedicineNorthwestern UniversityChicagoUSA

Personalised recommendations