Plaque assessment by coronary CT

  • Bálint Szilveszter
  • Csilla Celeng
  • Pál Maurovich-HorvatEmail author
Original Paper


Coronary CT angiography (CTA) has emerged as a highly reliable and non-invasive modality for the exclusion of coronary artery disease. Recent technological advancements in coronary CTA imaging allow for robust qualitative and quantitative assessment of atherosclerotic plaques. Furthermore, CTA is a promising modality for functional evaluation of coronary lesions. Individual plaque features, the extent and severity of atherosclerotic plaque burden were proposed to improve cardiovascular risk stratification. It has been suggested that total atherosclerotic plaque burden is a stronger predictor of coronary events than total ischemia burden. The quest to noninvasively detect individual vulnerable plaques still remains. In the current review we sought to summarize state-of-the-art coronary artery plaque assessment by CTA.


Coronary artery disease Plaque assessment Vulnerable plaque Coronary CT angiography Atherosclerosis 


Compliance with ethical standards

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

For this type of study formal consent is not required.


  1. 1.
    Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, Huffman MD, Judd SE, Kissela BM, Lackland DT, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Matchar DB, McGuire DK, Mohler ER III, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Willey JZ, Woo D, Yeh RW, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2015) Heart disease and stroke statistics—2015 update: a report from the American Heart Association. Circulation 131(4):e29–e322. doi: 10.1161/CIR.0000000000000152 PubMedCrossRefGoogle Scholar
  2. 2.
    Mendis S, Davis S, Norrving B (2015) Organizational update: the world health organization global status report on noncommunicable diseases 2014; one more landmark step in the combat against stroke and vascular disease. Stroke 46(5):e121–e122. doi: 10.1161/STROKEAHA.115.008097 PubMedCrossRefGoogle Scholar
  3. 3.
    Heidenreich PA, Trogdon JG, Khavjou OA, Butler J, Dracup K, Ezekowitz MD, Finkelstein EA, Hong Y, Johnston SC, Khera A, Lloyd-Jones DM, Nelson SA, Nichol G, Orenstein D, Wilson PW, Woo YJ, American Heart Association Advocacy Coordinating C, Stroke C, Council on Cardiovascular R, Intervention, Council on Clinical C, Council on E, Prevention, Council on A, Thrombosis, Vascular B, Council on C, Critical C, Perioperative, Resuscitation, Council on Cardiovascular N, Council on the Kidney in Cardiovascular D, Council on Cardiovascular S, Anesthesia, Interdisciplinary Council on Quality of C, Outcomes R (2011) Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation 123(8):933–944. doi: 10.1161/CIR.0b013e31820a55f5
  4. 4.
    Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3(11):e442. doi: 10.1371/journal.pmed.0030442 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Ohira T, Iso H (2013) Cardiovascular disease epidemiology in Asia: an overview. Circ J 77(7):1646–1652PubMedCrossRefGoogle Scholar
  6. 6.
    Westerby R (2011) An overview of cardiovascular disease risk assessment. Nurs Stand 26(13):48–55; quiz 56. doi: 10.7748/ns2011.
  7. 7.
    Hulten E, Bittencourt MS, Singh A, O’Leary D, Christman MP, Osmani W, Abbara S, Steigner ML, Truong QA, Nasir K, Rybicki FF, Klein J, Hainer J, Brady TJ, Hoffmann U, Ghoshhajra BB, Hachamovitch R, Di Carli MF, Blankstein R (2014) Coronary artery disease detected by coronary computed tomographic angiography is associated with intensification of preventive medical therapy and lower low-density lipoprotein cholesterol. Circ Cardiovasc Imaging 7(4):629–638. doi: 10.1161/CIRCIMAGING.113.001564 PubMedCrossRefGoogle Scholar
  8. 8.
    Trogdon JG, Finkelstein EA, Nwaise IA, Tangka FK, Orenstein D (2007) The economic burden of chronic cardiovascular disease for major insurers. Health Promot Pract 8(3):234–242. doi: 10.1177/1524839907303794 PubMedCrossRefGoogle Scholar
  9. 9.
    Greenland P, Knoll MD, Stamler J, Neaton JD, Dyer AR, Garside DB, Wilson PW (2003) Major risk factors as antecedents of fatal and nonfatal coronary heart disease events. JAMA 290(7):891–897. doi: 10.1001/jama.290.7.891 PubMedCrossRefGoogle Scholar
  10. 10.
    Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, Liu K, Shea S, Szklo M, Bluemke DA, O’Leary DH, Tracy R, Watson K, Wong ND, Kronmal RA (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358(13):1336–1345. doi: 10.1056/NEJMoa072100 PubMedCrossRefGoogle Scholar
  11. 11.
    Voros S (2009) What are the potential advantages and disadvantages of volumetric CT scanning? J Cardiovasc Comput Tomogr 3(2):67–70. doi: 10.1016/j.jcct.2008.12.010 PubMedCrossRefGoogle Scholar
  12. 12.
    Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, Paul N, Clouse ME, Shapiro EP, Hoe J, Lardo AC, Bush DE, de Roos A, Cox C, Brinker J, Lima JA (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336. doi: 10.1056/NEJMoa0806576 PubMedCrossRefGoogle Scholar
  13. 13.
    Puchner SB, Ferencik M, Maurovich-Horvat P, Nakano M, Otsuka F, Kauczor HU, Virmani R, Hoffmann U, Schlett CL (2015) Iterative image reconstruction algorithms in coronary CT angiography improve the detection of lipid-core plaque—a comparison with histology. Eur Radiol 25(1):15–23. doi: 10.1007/s00330-014-3404-6 PubMedCrossRefGoogle Scholar
  14. 14.
    Oda S, Weissman G, Vembar M, Weigold WG (2014) Iterative model reconstruction: improved image quality of low-tube-voltage prospective ECG-gated coronary CT angiography images at 256-slice CT. Eur J Radiol 83(8):1408–1415. doi: 10.1016/j.ejrad.2014.04.027 PubMedCrossRefGoogle Scholar
  15. 15.
    Takx RA, Willemink MJ, Nathoe HM, Schilham AM, Budde RP, de Jong PA, Leiner T (2014) The effect of iterative reconstruction on quantitative computed tomography assessment of coronary plaque composition. Int J Cardiovasc Imaging 30(1):155–163. doi: 10.1007/s10554-013-0293-8 PubMedCrossRefGoogle Scholar
  16. 16.
    Rinehart S, Vazquez G, Qian Z, Murrieta L, Christian K, Voros S (2011) Quantitative measurements of coronary arterial stenosis, plaque geometry, and composition are highly reproducible with a standardized coronary arterial computed tomographic approach in high-quality CT datasets. J Cardiovasc Comput Tomogr 5(1):35–43. doi: 10.1016/j.jcct.2010.09.006 PubMedCrossRefGoogle Scholar
  17. 17.
    Voros S, Rinehart S, Qian Z, Joshi P, Vazquez G, Fischer C, Belur P, Hulten E, Villines TC (2011) Coronary atherosclerosis imaging by coronary CT angiography: current status, correlation with intravascular interrogation and meta-analysis. JACC Cardiovasc Imaging 4(5):537–548. doi: 10.1016/j.jcmg.2011.03.006 PubMedCrossRefGoogle Scholar
  18. 18.
    Boogers MJ, Broersen A, van Velzen JE, de Graaf FR, El-Naggar HM, Kitslaar PH, Dijkstra J, Delgado V, Boersma E, de Roos A, Schuijf JD, Schalij MJ, Reiber JH, Bax JJ, Jukema JW (2012) Automated quantification of coronary plaque with computed tomography: comparison with intravascular ultrasound using a dedicated registration algorithm for fusion-based quantification. Eur Heart J 33(8):1007–1016. doi: 10.1093/eurheartj/ehr465 PubMedCrossRefGoogle Scholar
  19. 19.
    Chang AM, Le J, Matsuura AC, Litt HI, Hollander JE (2011) Does coronary artery calcium scoring add to the predictive value of coronary computed tomography angiography for adverse cardiovascular events in low-risk chest pain patients? Acad Emerg Med 18(10):1065–1071. doi: 10.1111/j.1553-2712.2011.01173.x PubMedCrossRefGoogle Scholar
  20. 20.
    Kondos GT, Hoff JA, Sevrukov A, Daviglus ML, Garside DB, Devries SS, Chomka EV, Liu K (2003) Electron-beam tomography coronary artery calcium and cardiac events: a 37-month follow-up of 5635 initially asymptomatic low- to intermediate-risk adults. Circulation 107(20):2571–2576. doi: 10.1161/01.CIR.0000068341.61180.55 PubMedCrossRefGoogle Scholar
  21. 21.
    Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM (2000) Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 20(5):1262–1275PubMedCrossRefGoogle Scholar
  22. 22.
    Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R (1999) Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 281(10):921–926PubMedCrossRefGoogle Scholar
  23. 23.
    Arbustini E, Dal Bello B, Morbini P, Burke AP, Bocciarelli M, Specchia G, Virmani R (1999) Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 82(3):269–272PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Virmani R, Burke AP, Kolodgie FD, Farb A (2002) Vulnerable plaque: the pathology of unstable coronary lesions. J Interv Cardiol 15(6):439–446PubMedCrossRefGoogle Scholar
  25. 25.
    Nabel EG, Braunwald E (2012) A tale of coronary artery disease and myocardial infarction. N Engl J Med 366(1):54–63. doi: 10.1056/NEJMra1112570 PubMedCrossRefGoogle Scholar
  26. 26.
    Libby P (2013) Mechanisms of acute coronary syndromes and their implications for therapy. N Engl J Med 368(21):2004–2013. doi: 10.1056/NEJMra1216063 PubMedCrossRefGoogle Scholar
  27. 27.
    Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R (2010) Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol 30(7):1282–1292. doi: 10.1161/ATVBAHA.108.179739 PubMedCrossRefGoogle Scholar
  28. 28.
    Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, Finn AV, Virmani R (2001) The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 16(5):285–292PubMedCrossRefGoogle Scholar
  29. 29.
    Virmani R, Burke AP, Farb A, Kolodgie FD (2006) Pathology of the vulnerable plaque. J Am Coll Cardiol 47(8 Suppl):C13–C18. doi: 10.1016/j.jacc.2005.10.065 PubMedCrossRefGoogle Scholar
  30. 30.
    Virmani R, Burke AP, Kolodgie FD, Farb A (2003) Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol 16(3):267–272PubMedCrossRefGoogle Scholar
  31. 31.
    Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R (1997) Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 336(18):1276–1282PubMedCrossRefGoogle Scholar
  32. 32.
    Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, Naruse H, Ishii J, Hishida H, Wong ND, Virmani R, Kondo T, Ozaki Y, Narula J (2009) Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol 54(1):49–57. doi: 10.1016/j.jacc.2009.02.068 PubMedCrossRefGoogle Scholar
  33. 33.
    Obaid DR, Calvert PA, Gopalan D, Parker RA, Hoole SP, West NE, Goddard M, Rudd JH, Bennett MR (2013) Atherosclerotic plaque composition and classification identified by coronary computed tomography: assessment of computed tomography-generated plaque maps compared with virtual histology intravascular ultrasound and histology. Circ Cardiovasc Imaging 6(5):655–664. doi: 10.1161/CIRCIMAGING.112.000250 PubMedCrossRefGoogle Scholar
  34. 34.
    Maurovich-Horvat P, Ferencik M, Voros S, Merkely B, Hoffmann U (2014) Comprehensive plaque assessment by coronary CT angiography. Nat Rev Cardiol 11(7):390–402. doi: 10.1038/nrcardio.2014.60 PubMedCrossRefGoogle Scholar
  35. 35.
    Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B, Wildermuth S (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26(15):1482–1487. doi: 10.1093/eurheartj/ehi261 PubMedCrossRefGoogle Scholar
  36. 36.
    Takano M, Murakami D, Yamamoto M, Seino Y, Mizuno K (2011) Natural history of a thin-cap fibroatheroma: serial observations by optical coherence tomography. Circ Cardiovasc Interv 4(6):638–639. doi: 10.1161/CIRCINTERVENTIONS.111.962829 PubMedCrossRefGoogle Scholar
  37. 37.
    Rathore S, Terashima M, Matsuo H, Kinoshita Y, Kimura M, Tsuchikane E, Nasu K, Ehara M, Asakura Y, Katoh O, Suzuki T (2011) In-vivo detection of the frequency and distribution of thin-cap fibroatheroma and ruptured plaques in patients with coronary artery disease: an optical coherence tomographic study. Coron Artery Dis 22(1):64–72. doi: 10.1097/MCA.0b013e32833e1c36 PubMedCrossRefGoogle Scholar
  38. 38.
    Kashiwagi M, Tanaka A, Kitabata H, Tsujioka H, Kataiwa H, Komukai K, Tanimoto T, Takemoto K, Takarada S, Kubo T, Hirata K, Nakamura N, Mizukoshi M, Imanishi T, Akasaka T (2009) Feasibility of noninvasive assessment of thin-cap fibroatheroma by multidetector computed tomography. JACC Cardiovasc Imaging 2(12):1412–1419. doi: 10.1016/j.jcmg.2009.09.012 PubMedCrossRefGoogle Scholar
  39. 39.
    Narula J, Nakano M, Virmani R, Kolodgie FD, Petersen R, Newcomb R, Malik S, Fuster V, Finn AV (2013) Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol 61(10):1041–1051. doi: 10.1016/j.jacc.2012.10.054 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Marwan M, Taher MA, El Meniawy K, Awadallah H, Pflederer T, Schuhback A, Ropers D, Daniel WG, Achenbach S (2011) In vivo CT detection of lipid-rich coronary artery atherosclerotic plaques using quantitative histogram analysis: a head to head comparison with IVUS. Atherosclerosis 215(1):110–115. doi: 10.1016/j.atherosclerosis.2010.12.006 PubMedCrossRefGoogle Scholar
  41. 41.
    Narula J, Garg P, Achenbach S, Motoyama S, Virmani R, Strauss HW (2008) Arithmetic of vulnerable plaques for noninvasive imaging. Nat Clin Pract Cardiovasc Med 5(Suppl 2):S2–S10. doi: 10.1038/ncpcardio1247 PubMedCrossRefGoogle Scholar
  42. 42.
    Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J (2007) Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol 50(4):319–326. doi: 10.1016/j.jacc.2007.03.044 PubMedCrossRefGoogle Scholar
  43. 43.
    Gao D, Ning N, Guo Y, Ning W, Niu X, Yang J (2011) Computed tomography for detecting coronary artery plaques: a meta-analysis. Atherosclerosis 219(2):603–609. doi: 10.1016/j.atherosclerosis.2011.08.022 PubMedCrossRefGoogle Scholar
  44. 44.
    Achenbach S (2008) Can CT detect the vulnerable coronary plaque? Int J Cardiovasc Imaging 24(3):311–312. doi: 10.1007/s10554-007-9281-1 PubMedCrossRefGoogle Scholar
  45. 45.
    Dalager MG, Bottcher M, Dalager S, Andersen G, Thygesen J, Pedersen EM, Botker HE (2011) Imaging atherosclerotic plaques by cardiac computed tomography in vitro: impact of contrast type and acquisition protocol. Invest Radiol 46(12):790–795. doi: 10.1097/RLI.0b013e31822b122e PubMedCrossRefGoogle Scholar
  46. 46.
    Dalager MG, Bottcher M, Andersen G, Thygesen J, Pedersen EM, Dejbjerg L, Gotzsche O, Botker HE (2011) Impact of luminal density on plaque classification by CT coronary angiography. Int J Cardiovasc Imaging 27(4):593–600. doi: 10.1007/s10554-010-9695-z PubMedCrossRefGoogle Scholar
  47. 47.
    Horiguchi J, Fujioka C, Kiguchi M, Yamamoto H, Shen Y, Kihara Y (2011) In vitro measurement of CT density and estimation of stenosis related to coronary soft plaque at 100 kV and 120 kV on ECG-triggered scan. Eur J Radiol 77(2):294–298. doi: 10.1016/j.ejrad.2009.08.002 PubMedCrossRefGoogle Scholar
  48. 48.
    Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316(22):1371–1375. doi: 10.1056/NEJM198705283162204 PubMedCrossRefGoogle Scholar
  49. 49.
    Varnava AM, Mills PG, Davies MJ (2002) Relationship between coronary artery remodeling and plaque vulnerability. Circulation 105(8):939–943PubMedCrossRefGoogle Scholar
  50. 50.
    Glaser R, Selzer F, Faxon DP, Laskey WK, Cohen HA, Slater J, Detre KM, Wilensky RL (2005) Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation 111(2):143–149. doi: 10.1161/01.CIR.0000150335.01285.12 PubMedCrossRefGoogle Scholar
  51. 51.
    McPherson DD, Sirna SJ, Hiratzka LF, Thorpe L, Armstrong ML, Marcus ML, Kerber RE (1991) Coronary arterial remodeling studied by high-frequency epicardial echocardiography: an early compensatory mechanism in patients with obstructive coronary atherosclerosis. J Am Coll Cardiol 17(1):79–86PubMedCrossRefGoogle Scholar
  52. 52.
    Motoyama S, Sarai M, Narula J, Ozaki Y (2013) Coronary CT angiography and high-risk plaque morphology. Cardiovasc Interv Ther 28(1):1–8. doi: 10.1007/s12928-012-0140-1 PubMedCrossRefGoogle Scholar
  53. 53.
    Kroner ES, van Velzen JE, Boogers MJ, Siebelink HM, Schalij MJ, Kroft LJ, de Roos A, van der Wall EE, Jukema JW, Reiber JH, Schuijf JD, Bax JJ (2011) Positive remodeling on coronary computed tomography as a marker for plaque vulnerability on virtual histology intravascular ultrasound. Am J Cardiol 107(12):1725–1729. doi: 10.1016/j.amjcard.2011.02.337 PubMedCrossRefGoogle Scholar
  54. 54.
    Achenbach S, Ropers D, Hoffmann U, MacNeill B, Baum U, Pohle K, Brady TJ, Pomerantsev E, Ludwig J, Flachskampf FA, Wicky S, Jang IK, Daniel WG (2004) Assessment of coronary remodeling in stenotic and nonstenotic coronary atherosclerotic lesions by multidetector spiral computed tomography. J Am Coll Cardiol 43(5):842–847. doi: 10.1016/j.jacc.2003.09.053 PubMedCrossRefGoogle Scholar
  55. 55.
    Pedrazzini GB, D’Angeli I, Vassalli G, Faletra FF, Klersy C, Pasotti E, Corbacelli C, Moccetti T, Auricchio A (2011) Assessment of coronary stenosis, plaque burden and remodeling by multidetector computed tomography in patients referred for suspected coronary artery disease. J Cardiovasc Med (Hagerstown) 12(2):122–130. doi: 10.2459/JCM.0b013e3283403955 CrossRefGoogle Scholar
  56. 56.
    Mintz GS, Nissen SE, Anderson WD, Bailey SR, Erbel R, Fitzgerald PJ, Pinto FJ, Rosenfield K, Siegel RJ, Tuzcu EM, Yock PG (2001) American College of Cardiology Clinical Expert Consensus Document on Standards for Acquisition, Measurement and Reporting of Intravascular Ultrasound Studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus Documents. J Am Coll Cardiol 37(5):1478–1492PubMedCrossRefGoogle Scholar
  57. 57.
    Yamamoto H, Kitagawa T, Ohashi N, Utsunomiya H, Kunita E, Oka T, Urabe Y, Tsushima H, Awai K, Kihara Y (2013) Noncalcified atherosclerotic lesions with vulnerable characteristics detected by coronary CT angiography and future coronary events. J Cardiovasc Comput Tomogr 7(3):192–199. doi: 10.1016/j.jcct.2013.05.008 PubMedCrossRefGoogle Scholar
  58. 58.
    Nakazato R, Otake H, Konishi A, Iwasaki M, Koo BK, Fukuya H, Shinke T, Hirata K, Leipsic J, Berman DS, Min JK (2015) Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: a comparison to optical coherence tomography. Eur Heart J Cardiovas Imaging 16(4):373–379. doi: 10.1093/ehjci/jeu188 CrossRefGoogle Scholar
  59. 59.
    Maurovich-Horvat P, Hoffmann U, Vorpahl M, Nakano M, Virmani R, Alkadhi H (2010) The napkin-ring sign: CT signature of high-risk coronary plaques? JACC Cardiovasc Imaging 3(4):440–444. doi: 10.1016/j.jcmg.2010.02.003 PubMedCrossRefGoogle Scholar
  60. 60.
    Seifarth H, Schlett CL, Nakano M, Otsuka F, Karolyi M, Liew G, Maurovich-Horvat P, Alkadhi H, Virmani R, Hoffmann U (2012) Histopathological correlates of the napkin-ring sign plaque in coronary CT angiography. Atherosclerosis 224(1):90–96. doi: 10.1016/j.atherosclerosis.2012.06.021 PubMedCrossRefGoogle Scholar
  61. 61.
    Maurovich-Horvat P, Schlett CL, Alkadhi H, Nakano M, Otsuka F, Stolzmann P, Scheffel H, Ferencik M, Kriegel MF, Seifarth H, Virmani R, Hoffmann U (2012) The napkin-ring sign indicates advanced atherosclerotic lesions in coronary CT angiography. JACC Cardiovasc Imaging 5(12):1243–1252. doi: 10.1016/j.jcmg.2012.03.019 PubMedCrossRefGoogle Scholar
  62. 62.
    Otsuka K, Fukuda S, Tanaka A, Nakanishi K, Taguchi H, Yoshikawa J, Shimada K, Yoshiyama M (2013) Napkin-ring sign on coronary CT angiography for the prediction of acute coronary syndrome. JACC Cardiovasc Imaging 6(4):448–457. doi: 10.1016/j.jcmg.2012.09.016 PubMedCrossRefGoogle Scholar
  63. 63.
    Kodama T, Kondo T, Oida A, Fujimoto S, Narula J (2012) Computed tomographic angiography-verified plaque characteristics and slow-flow phenomenon during percutaneous coronary intervention. JACC Cardiovasc Interv 5(6):636–643. doi: 10.1016/j.jcin.2012.02.016 PubMedCrossRefGoogle Scholar
  64. 64.
    Petretta M, Daniele S, Acampa W, Imbriaco M, Pellegrino T, Messalli G, Xhoxhi E, Del Prete G, Nappi C, Accardo D, Angeloni F, Bonaduce D, Cuocolo A (2012) Prognostic value of coronary artery calcium score and coronary CT angiography in patients with intermediate risk of coronary artery disease. Int J Cardiovasc Imaging 28(6):1547–1556. doi: 10.1007/s10554-011-9948-5 PubMedCrossRefGoogle Scholar
  65. 65.
    Budoff MJ, Shaw LJ, Liu ST, Weinstein SR, Mosler TP, Tseng PH, Flores FR, Callister TQ, Raggi P, Berman DS (2007) Long-term prognosis associated with coronary calcification: observations from a registry of 25,253 patients. J Am Coll Cardiol 49(18):1860–1870. doi: 10.1016/j.jacc.2006.10.079 PubMedCrossRefGoogle Scholar
  66. 66.
    Greenland P, LaBree L, Azen SP, Doherty TM, Detrano RC (2004) Coronary artery calcium score combined with Framingham score for risk prediction in asymptomatic individuals. JAMA 291(2):210–215. doi: 10.1001/jama.291.2.210 PubMedCrossRefGoogle Scholar
  67. 67.
    van Osch JA, Mouden M, van Dalen JA, Timmer JR, Reiffers S, Knollema S, Greuter MJ, Ottervanger JP, Jager PL (2014) Influence of iterative image reconstruction on CT-based calcium score measurements. Int J Cardiovasc Imaging 30(5):961–967. doi: 10.1007/s10554-014-0409-9 PubMedGoogle Scholar
  68. 68.
    Funabashi N, Irie R, Namihira Y, Morimoto R, Aiba M, Ozawa K, Takaoka H, Ohta J, Masuda Y, Kobayashi Y (2015) Influence of tube voltage and heart rate on the Agatston calcium score using an in vitro, novel ECG-gated dual energy reconstruction 320 slice CT technique. Int J Cardiol 180:218–220. doi: 10.1016/j.ijcard.2014.11.164 PubMedCrossRefGoogle Scholar
  69. 69.
    Willemink MJ, Vliegenthart R, Takx RA, Leiner T, Budde RP, Bleys RL, Das M, Wildberger JE, Prokop M, Buls N, de Mey J, Schilham AM, de Jong PA (2014) Coronary artery calcification scoring with state-of-the-art CT scanners from different vendors has substantial effect on risk classification. Radiology 273(3):695–702. doi: 10.1148/radiol.14140066 PubMedCrossRefGoogle Scholar
  70. 70.
    Pletcher MJ, Tice JA, Pignone M, Browner WS (2004) Using the coronary artery calcium score to predict coronary heart disease events: a systematic review and meta-analysis. Arch Intern Med 164(12):1285–1292. doi: 10.1001/archinte.164.12.1285 PubMedCrossRefGoogle Scholar
  71. 71.
    Shaw LJ, Raggi P, Schisterman E, Berman DS, Callister TQ (2003) Prognostic value of cardiac risk factors and coronary artery calcium screening for all-cause mortality. Radiology 228(3):826–833. doi: 10.1148/radiol.2283021006 PubMedCrossRefGoogle Scholar
  72. 72.
    Tota-Maharaj R, Blaha MJ, McEvoy JW, Blumenthal RS, Muse ED, Budoff MJ, Shaw LJ, Berman DS, Rana JS, Rumberger J, Callister T, Rivera J, Agatston A, Nasir K (2012) Coronary artery calcium for the prediction of mortality in young adults <45 years old and elderly adults >75 years old. Eur Heart J 33(23):2955–2962. doi: 10.1093/eurheartj/ehs230 PubMedCrossRefGoogle Scholar
  73. 73.
    Raggi P, Shaw LJ, Berman DS, Callister TQ (2004) Prognostic value of coronary artery calcium screening in subjects with and without diabetes. J Am Coll Cardiol 43(9):1663–1669. doi: 10.1016/j.jacc.2003.09.068 PubMedCrossRefGoogle Scholar
  74. 74.
    Budoff MJ, Yu D, Nasir K, Mehrotra R, Chen L, Takasu J, Agrawal N, Liu ST, Blumenthal RS (2005) Diabetes and progression of coronary calcium under the influence of statin therapy. Am Heart J 149(4):695–700. doi: 10.1016/j.ahj.2004.07.034 PubMedCrossRefGoogle Scholar
  75. 75.
    Arbab-Zadeh A, Fuster V (2015) The Myth of the “Vulnerable Plaque”: transitioning from a focus on individual lesions to atherosclerotic disease burden for coronary artery disease risk assessment. J Am Coll Cardiol 65(8):846–855. doi: 10.1016/j.jacc.2014.11.041 PubMedCrossRefGoogle Scholar
  76. 76.
    Al-Mallah MH, Qureshi W, Lin FY, Achenbach S, Berman DS, Budoff MJ, Callister TQ, Chang HJ, Cademartiri F, Chinnaiyan K, Chow BJ, Cheng VY, Delago A, Gomez M, Hadamitzky M, Hausleiter J, Kaufmann PA, Leipsic J, Maffei E, Raff G, Shaw LJ, Villines TC, Cury RC, Feuchtner G, Plank F, Kim YJ, Dunning AM, Min JK (2014) Does coronary CT angiography improve risk stratification over coronary calcium scoring in symptomatic patients with suspected coronary artery disease? Results from the prospective multicenter international CONFIRM registry. Eur Heart J Cardiovasc Imaging 15(3):267–274. doi: 10.1093/ehjci/jet148 PubMedCrossRefGoogle Scholar
  77. 77.
    Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Cheng V, Chinnaiyan K, Chow BJ, Delago A, Hadamitzky M, Hausleiter J, Kaufmann P, Maffei E, Raff G, Shaw LJ, Villines T, Berman DS, Investigators C (2011) Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the International Multicenter CONFIRM (Coronary CT Angiography Evaluation for Clinical Outcomes: An International Multicenter Registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol 58(8):849–860. doi: 10.1016/j.jacc.2011.02.074 PubMedCrossRefGoogle Scholar
  78. 78.
    Lin FY, Shaw LJ, Dunning AM, Labounty TM, Choi JH, Weinsaft JW, Koduru S, Gomez MJ, Delago AJ, Callister TQ, Berman DS, Min JK (2011) Mortality risk in symptomatic patients with nonobstructive coronary artery disease: a prospective 2-center study of 2,583 patients undergoing 64-detector row coronary computed tomographic angiography. J Am Coll Cardiol 58(5):510–519. doi: 10.1016/j.jacc.2010.11.078 PubMedCrossRefGoogle Scholar
  79. 79.
    Mancini GB, Hartigan PM, Shaw LJ, Berman DS, Hayes SW, Bates ER, Maron DJ, Teo K, Sedlis SP, Chaitman BR, Weintraub WS, Spertus JA, Kostuk WJ, Dada M, Booth DC, Boden WE (2014) Predicting outcome in the COURAGE trial (Clinical Outcomes Utilizing Revascularization and Aggressive Drug Evaluation): coronary anatomy versus ischemia. JACC Cardiovasc Interv 7(2):195–201. doi: 10.1016/j.jcin.2013.10.017 PubMedCrossRefGoogle Scholar
  80. 80.
    Bittencourt MS, Hulten E, Ghoshhajra B, O’Leary D, Christman MP, Montana P, Truong QA, Steigner M, Murthy VL, Rybicki FJ, Nasir K, Gowdak LH, Hainer J, Brady TJ, Di Carli MF, Hoffmann U, Abbara S, Blankstein R (2014) Prognostic value of nonobstructive and obstructive coronary artery disease detected by coronary computed tomography angiography to identify cardiovascular events. Circ Cardiovasc Imaging 7(2):282–291. doi: 10.1161/CIRCIMAGING.113.001047 PubMedCrossRefGoogle Scholar
  81. 81.
    Nakazato R, Arsanjani R, Achenbach S, Gransar H, Cheng VY, Dunning A, Lin FY, Al-Mallah M, Budoff MJ, Callister TQ, Chang HJ, Cademartiri F, Chinnaiyan K, Chow BJ, Delago A, Hadamitzky M, Hausleiter J, Kaufmann P, Raff G, Shaw LJ, Villines T, Cury RC, Feuchtner G, Kim YJ, Leipsic J, Berman DS, Min JK (2014) Age-related risk of major adverse cardiac event risk and coronary artery disease extent and severity by coronary CT angiography: results from 15 187 patients from the International Multisite CONFIRM Study. Eur Heart J Cardiovasc Imaging 15(5):586–594. doi: 10.1093/ehjci/jet132 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Mushtaq S, De Araujo Goncalves P, Garcia-Garcia HM, Pontone G, Bartorelli AL, Bertella E, Campos CM, Pepi M, Serruys PW, Andreini D (2015) Long-term prognostic effect of coronary atherosclerotic burden: validation of the computed tomography-Leaman score. Circ Cardiovasc Imaging 8(2):e002332. doi: 10.1161/CIRCIMAGING.114.002332 PubMedCrossRefGoogle Scholar
  83. 83.
    Im TS, Chun EJ, Lee MS, Adla T, Kim JA, Choi SI (2014) Grade-response relationship between blood pressure and severity of coronary atherosclerosis in asymptomatic adults: assessment with coronary CT angiography. Int J Cardiovasc Imaging 30(Suppl 2):105–112. doi: 10.1007/s10554-014-0522-9 PubMedCrossRefGoogle Scholar
  84. 84.
    Prabhakar AM, Staziaki PV, Takx RA, Ghoshhajra BB (2015) Preoperative evaluation for coronary atherosclerosis with computed tomography angiography in intravenous drug users: an emerging indication in the face of a growing threat. Int J Cardiovasc Imaging. doi: 10.1007/s10554-015-0719-6 PubMedGoogle Scholar
  85. 85.
    Lehman SJ, Schlett CL, Bamberg F, Lee H, Donnelly P, Shturman L, Kriegel MF, Brady TJ, Hoffmann U (2009) Assessment of coronary plaque progression in coronary computed tomography angiography using a semiquantitative score. JACC Cardiovasc Imaging 2(11):1262–1270. doi: 10.1016/j.jcmg.2009.07.007 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Papadopoulou SL, Neefjes LA, Garcia-Garcia HM, Flu WJ, Rossi A, Dharampal AS, Kitslaar PH, Mollet NR, Veldhof S, Nieman K, Stone GW, Serruys PW, Krestin GP, de Feyter PJ (2012) Natural history of coronary atherosclerosis by multislice computed tomography. JACC Cardiovasc Imaging 5(3 Suppl):S28–S37. doi: 10.1016/j.jcmg.2012.01.009 PubMedCrossRefGoogle Scholar
  87. 87.
    Papadopoulou SL, Garcia-Garcia HM, Rossi A, Girasis C, Dharampal AS, Kitslaar PH, Krestin GP, de Feyter PJ (2013) Reproducibility of computed tomography angiography data analysis using semiautomated plaque quantification software: implications for the design of longitudinal studies. Int J Cardiovasc Imaging 29(5):1095–1104. doi: 10.1007/s10554-012-0167-5 PubMedCrossRefGoogle Scholar
  88. 88.
    Versteylen MO, Kietselaer BL, Dagnelie PC, Joosen IA, Dedic A, Raaijmakers RH, Wildberger JE, Nieman K, Crijns HJ, Niessen WJ, Daemen MJ, Hofstra L (2013) Additive value of semiautomated quantification of coronary artery disease using cardiac computed tomographic angiography to predict future acute coronary syndrome. J Am Coll Cardiol 61(22):2296–2305. doi: 10.1016/j.jacc.2013.02.065 PubMedCrossRefGoogle Scholar
  89. 89.
    Schuhbaeck A, Dey D, Otaki Y, Slomka P, Kral BG, Achenbach S, Berman DS, Fishman EK, Lai S, Lai H (2014) Interscan reproducibility of quantitative coronary plaque volume and composition from CT coronary angiography using an automated method. Eur Radiol 24(9):2300–2308. doi: 10.1007/s00330-014-3253-3 PubMedCrossRefGoogle Scholar
  90. 90.
    Oberoi S, Meinel FG, Schoepf UJ, Nance JW, De Cecco CN, Gebregziabher M, Costello P, Weininger M (2014) Reproducibility of noncalcified coronary artery plaque burden quantification from coronary CT angiography across different image analysis platforms. AJR Am J Roentgenol 202(1):W43–W49. doi: 10.2214/AJR.13.11225 PubMedCrossRefGoogle Scholar
  91. 91.
    Kim YJ, Jin GY, Kim EY, Han YM, Chae JK, Lee SR, Kwon KS (2013) Quantification of coronary artery plaque using 64-slice dual-source CT: comparison of semi-automatic and automatic computer-aided analysis based on intravascular ultrasonography as the gold standard. Int J Cardiovasc Imaging 29(Suppl 2):93–100. doi: 10.1007/s10554-013-0333-4 PubMedCrossRefGoogle Scholar
  92. 92.
    de Graaf MA, Broersen A, Kitslaar PH, Roos CJ, Dijkstra J, Lelieveldt BP, Jukema JW, Schalij MJ, Delgado V, Bax JJ, Reiber JH, Scholte AJ (2013) Automatic quantification and characterization of coronary atherosclerosis with computed tomography coronary angiography: cross-correlation with intravascular ultrasound virtual histology. Int J Cardiovasc Imaging 29(5):1177–1190. doi: 10.1007/s10554-013-0194-x PubMedCrossRefGoogle Scholar
  93. 93.
    Rief M, Kranz A, Hartmann L, Roehle R, Laule M, Dewey M (2014) Computer-aided CT coronary artery stenosis detection: comparison with human reading and quantitative coronary angiography. Int J Cardiovasc Imaging 30(8):1621–1627. doi: 10.1007/s10554-014-0513-x PubMedCrossRefGoogle Scholar
  94. 94.
    Naoum C, Blanke P, Leipsic J (2015) Iterative reconstruction in cardiac CT. J Cardiovasc Comput Tomogr 9(4):255–263. doi: 10.1016/j.jcct.2015.04.004 PubMedCrossRefGoogle Scholar
  95. 95.
    Fuchs TA, Fiechter M, Gebhard C, Stehli J, Ghadri JR, Kazakauskaite E, Herzog BA, Husmann L, Gaemperli O, Kaufmann PA (2013) CT coronary angiography: impact of adapted statistical iterative reconstruction (ASIR) on coronary stenosis and plaque composition analysis. Int J Cardiovasc Imaging 29(3):719–724. doi: 10.1007/s10554-012-0134-1 PubMedCrossRefGoogle Scholar
  96. 96.
    Puchner SB, Ferencik M, Karolyi M, Do S, Maurovich-Horvat P, Kauczor HU, Hoffmann U, Schlett CL (2013) The effect of iterative image reconstruction algorithms on the feasibility of automated plaque assessment in coronary CT angiography. Int J Cardiovasc Imaging 29(8):1879–1888. doi: 10.1007/s10554-013-0281-z PubMedCrossRefGoogle Scholar
  97. 97.
    Eshtehardi P, McDaniel MC, Suo J, Dhawan SS, Timmins LH, Binongo JN, Golub LJ, Corban MT, Finn AV, Oshinski JN, Quyyumi AA, Giddens DP, Samady H (2012) Association of coronary wall shear stress with atherosclerotic plaque burden, composition, and distribution in patients with coronary artery disease. J Am Heart Assoc 1(4):e002543. doi: 10.1161/JAHA.112.002543 PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Chatzizisis YS, Coskun AU, Jonas M, Edelman ER, Feldman CL, Stone PH (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49(25):2379–2393. doi: 10.1016/j.jacc.2007.02.059 PubMedCrossRefGoogle Scholar
  99. 99.
    Stone PH, Coskun AU, Kinlay S, Clark ME, Sonka M, Wahle A, Ilegbusi OJ, Yeghiazarians Y, Popma JJ, Orav J, Kuntz RE, Feldman CL (2003) Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6-month follow-up study. Circulation 108(4):438–444. doi: 10.1161/01.CIR.0000080882.35274.AD PubMedCrossRefGoogle Scholar
  100. 100.
    Slager CJ, Wentzel JJ, Gijsen FJ, Thury A, van der Wal AC, Schaar JA, Serruys PW (2005) The role of shear stress in the destabilization of vulnerable plaques and related therapeutic implications. Nat Clin Pract Cardiovasc Med 2(9):456–464. doi: 10.1038/ncpcardio0298 PubMedCrossRefGoogle Scholar
  101. 101.
    Fukumoto Y, Hiro T, Fujii T, Hashimoto G, Fujimura T, Yamada J, Okamura T, Matsuzaki M (2008) Localized elevation of shear stress is related to coronary plaque rupture: a 3-dimensional intravascular ultrasound study with in vivo color mapping of shear stress distribution. J Am Coll Cardiol 51(6):645–650. doi: 10.1016/j.jacc.2007.10.030 PubMedCrossRefGoogle Scholar
  102. 102.
    Chatzizisis YS, Jonas M, Coskun AU, Beigel R, Stone BV, Maynard C, Gerrity RG, Daley W, Rogers C, Edelman ER, Feldman CL, Stone PH (2008) Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation 117(8):993–1002. doi: 10.1161/CIRCULATIONAHA.107.695254 PubMedCrossRefGoogle Scholar
  103. 103.
    Falk E, Shah PK, Fuster V (1995) Coronary plaque disruption. Circulation 92(3):657–671PubMedCrossRefGoogle Scholar
  104. 104.
    Stone PH, Saito S, Takahashi S, Makita Y, Nakamura S, Kawasaki T, Takahashi A, Katsuki T, Nakamura S, Namiki A, Hirohata A, Matsumura T, Yamazaki S, Yokoi H, Tanaka S, Otsuji S, Yoshimachi F, Honye J, Harwood D, Reitman M, Coskun AU, Papafaklis MI, Feldman CL, Investigators P (2012) Prediction of progression of coronary artery disease and clinical outcomes using vascular profiling of endothelial shear stress and arterial plaque characteristics: the PREDICTION Study. Circulation 126(2):172–181. doi: 10.1161/CIRCULATIONAHA.112.096438 PubMedCrossRefGoogle Scholar
  105. 105.
    Borkin MA, Gajos KZ, Peters A, Mitsouras D, Melchionna S, Rybicki FJ, Feldman CL, Pfister H (2011) Evaluation of artery visualizations for heart disease diagnosis. IEEE Trans Visual Comput Graph 17(12):2479–2488. doi: 10.1109/TVCG.2011.192 CrossRefGoogle Scholar
  106. 106.
    Frauenfelder T, Boutsianis E, Schertler T, Husmann L, Leschka S, Poulikakos D, Marincek B, Alkadhi H (2007) In-vivo flow simulation in coronary arteries based on computed tomography datasets: feasibility and initial results. Eur Radiol 17(5):1291–1300. doi: 10.1007/s00330-006-0465-1 PubMedCrossRefGoogle Scholar
  107. 107.
    Gijsen FJ, Schuurbiers JC, van de Giessen AG, Schaap M, van der Steen AF, Wentzel JJ (2014) 3D reconstruction techniques of human coronary bifurcations for shear stress computations. J Biomech 47(1):39–43. doi: 10.1016/j.jbiomech.2013.10.021 PubMedCrossRefGoogle Scholar
  108. 108.
    Rikhtegar F, Knight JA, Olgac U, Saur SC, Poulikakos D, Marshall W Jr, Cattin PC, Alkadhi H, Kurtcuoglu V (2012) Choosing the optimal wall shear parameter for the prediction of plaque location-A patient-specific computational study in human left coronary arteries. Atherosclerosis 221(2):432–437. doi: 10.1016/j.atherosclerosis.2012.01.018 PubMedCrossRefGoogle Scholar
  109. 109.
    Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, Dallas AP, Douglas PS, Foody JM, Gerber TC, Hinderliter AL, King SB III, Kligfield PD, Krumholz HM, Kwong RY, Lim MJ, Linderbaum JA, Mack MJ, Munger MA, Prager RL, Sabik JF, Shaw LJ, Sikkema JD, Smith CR Jr., Smith SC Jr., Spertus JA, Williams SV, American College of Cardiology F, American Heart Association Task Force on Practice G, American College of P, American Association for Thoracic S, Preventive Cardiovascular Nurses A, Society for Cardiovascular A, Interventions, Society of Thoracic S (2012) 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 60(24):e44–e164. doi: 10.1016/j.jacc.2012.07.013
  110. 110.
    Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK (2011) Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW (Diagnosis of Ischemia-Causing Stenoses Obtained Via Noninvasive Fractional Flow Reserve) study. J Am Coll Cardiol 58(19):1989–1997. doi: 10.1016/j.jacc.2011.06.066 PubMedCrossRefGoogle Scholar
  111. 111.
    Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L (2012) Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA 308(12):1237–1245. doi: 10.1001/2012.jama.11274 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Norgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Botker HE, Achenbach S, Group NXTTS (2014) Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps). J Am Coll Cardiol 63(12):1145–1155. doi: 10.1016/j.jacc.2013.11.043 PubMedCrossRefGoogle Scholar
  113. 113.
    Coenen A, Lubbers MM, Kurata A, Kono A, Dedic A, Chelu RG, Dijkshoorn ML, Gijsen FJ, Ouhlous M, van Geuns RJ, Nieman K (2015) Fractional flow reserve computed from noninvasive CT angiography data: diagnostic performance of an on-site clinician-operated computational fluid dynamics algorithm. Radiology 274(3):674–683. doi: 10.1148/radiol.14140992 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Bálint Szilveszter
    • 1
  • Csilla Celeng
    • 1
  • Pál Maurovich-Horvat
    • 1
    Email author
  1. 1.MTA-SE Cardiovascular Imaging Research Group, Heart and Vascular CenterSemmelweis UniversityBudapestHungary

Personalised recommendations