Advertisement

The International Journal of Cardiovascular Imaging

, Volume 31, Issue 7, pp 1425–1434 | Cite as

Ex vivo differential phase contrast and magnetic resonance imaging for characterization of human carotid atherosclerotic plaques

  • Romana Meletta
  • Nicole Borel
  • Paul Stolzmann
  • Alberto Astolfo
  • Jan Klohs
  • Marco Stampanoni
  • Markus Rudin
  • Roger Schibli
  • Stefanie D. Krämer
  • Adrienne Müller HerdeEmail author
Original Paper

Abstract

Non-invasive detection of specific atherosclerotic plaque components related to vulnerability is of high clinical relevance to prevent cerebrovascular events. The feasibility of magnetic resonance imaging (MRI) for characterization of plaque components was already demonstrated. We aimed to evaluate the potential of ex vivo differential phase contrast X-ray tomography (DPC) to accurately characterize human carotid plaque components in comparison to high field multicontrast MRI and histopathology. Two human plaque segments, obtained from carotid endarterectomy, classified according to criteria of the American Heart Association as stable and unstable plaque, were examined by ex vivo DPC tomography and multicontrast MRI (T1-, T2-, and proton density-weighted imaging, magnetization transfer contrast, diffusion-weighted imaging). To identify specific plaque components, the plaques were subsequently sectioned and stained for fibrous and cellular components, smooth muscle cells, hemosiderin, and fibrin. Histological data were then matched with DPC and MR images to define signal criteria for atherosclerotic plaque components. Characteristic structures, such as the lipid and necrotic core covered by a fibrous cap, calcification and hemosiderin deposits were delineated by histology and found with excellent sensitivity, resolution and accuracy in both imaging modalities. DPC tomography was superior to MRI regarding resolution and soft tissue contrast. Ex vivo DPC tomography allowed accurate identification of structures and components of atherosclerotic plaques at different lesion stages, in good correlation with histopathological findings.

Keywords

X-rays Synchrotron Differential phase contrast Magnetic resonance imaging Carotid plaque Atherosclerosis 

Abbreviations

DPC

Differential phase contrast

MRI

Magnetic resonance imaging

PD

Proton density

MTC

Magnetization transfer contrast

DW

Diffusion-weighted

L

Lumen of the blood vessel

M

Media

Int

Intima

IT

Intimal thickening

FC

Fibrous cap

LC

Lipid core

NC

Necrotic core

U

Ulceration site

Notes

Acknowledgments

The authors are grateful to Dr. Bernd R. Pinzer and Sabina Wunderlin for technical support. The Scientific Center for Optical and Electron Microscopy (ScopeM) of the ETH Zurich is acknowledged for support. We thank the surgeon Zoran Rancic (Z.R.) from the Clinic for Cardiovascular Surgery, University Hospital Zurich, for the initial macroscopic classification of the plaques. The team of Prof. Philipp A. Kaufmann from the Department of Nuclear Medicine, Cardiac Imaging, University Hospital Zurich, is acknowledged for coordinating the plaque collection.

Compliance with Ethical Standards

Conflict of interest

None.

Funding

This work was financially supported by the Clinical Research Priority Program (CRPP) of the University of Zurich on Molecular Imaging (MINZ) and the Swiss National Science Foundation (Grant PZ00P3_136822 to J.K.).

Supplementary material

10554_2015_706_MOESM1_ESM.tif (21.3 mb)
Supplementary material 1 (TIFF 21851 kb)
10554_2015_706_MOESM2_ESM.tif (4.6 mb)
Supplementary material 2 (TIFF 4712 kb)
10554_2015_706_MOESM3_ESM.doc (26 kb)
Supplementary material 3 (DOC 26 kb)
10554_2015_706_MOESM4_ESM.docx (30 kb)
Supplementary material 4 (DOCX 30 kb)
10554_2015_706_MOESM5_ESM.docx (31 kb)
Supplementary material 5 (DOCX 30 kb)
10554_2015_706_MOESM6_ESM.gif (71.8 mb)
Supplementary material 6 (GIF 73548 kb)
10554_2015_706_MOESM7_ESM.gif (139.4 mb)
Supplementary material 7 (GIF 142746 kb)

References

  1. 1.
    World Health Organization, Mackay J, Mensah GA, Mendis S, Greenlund K (2004) The atlas of heart disease and stroke. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Judd SE, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Mackey RH, Magid DJ, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, III, Moy CS, Mussolino ME, Neumar RW, Nichol G, Pandey DK, Paynter NP, Reeves MJ, Sorlie PD, Stein J, Towfighi A, Turan TN, Virani SS, Wong ND, Woo D, Turner MB, American Heart Association Statistics C, Stroke Statistics S (2014) Heart disease and stroke statistics–2014 update: a report from the American Heart Association. Circulation 129:e28–e292. doi: 10.1161/01.cir.0000441139.02102.80
  3. 3.
    Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R (2010) Concept of vulnerable/unstable plaque. Arterioscler Thromb Vasc Biol 30:1282–1292. doi: 10.1161/ATVBAHA.108.179739 CrossRefPubMedGoogle Scholar
  4. 4.
    Pinzer BR, Cacquevel M, Modregger P, McDonald SA, Bensadoun JC, Thuering T, Aebischer P, Stampanoni M (2012) Imaging brain amyloid deposition using grating-based differential phase contrast tomography. Neuroimage 61:1336–1346. doi: 10.1016/j.neuroimage.2012.03.029 CrossRefPubMedGoogle Scholar
  5. 5.
    Stampanoni M, Groso A, Isenegger A, Mikuljan G, Chen Q, Bertrand A, Henein S, Betemps R, Frommherz U, Bohler P, Meister D, Lange M, Abela R (2006) Trends in synchrotron-based tomographic imaging: the SLS experience. Dev X-Ray Tomogr 5:6318. doi: 10.1117/12.679497 Google Scholar
  6. 6.
    Weitkamp T, Diaz A, David C, Pfeiffer F, Stampanoni M, Cloetens P, Ziegler E (2005) X-ray phase imaging with a grating interferometer. Opt Express 13:6296–6304CrossRefPubMedGoogle Scholar
  7. 7.
    Toussaint JF, LaMuraglia GM, Southern JF, Fuster V, Kantor HL (1996) Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94:932–938CrossRefPubMedGoogle Scholar
  8. 8.
    Shinnar M, Fallon JT, Wehrli S, Levin M, Dalmacy D, Fayad ZA, Badimon JJ, Harrington M, Harrington E, Fuster V (1999) The diagnostic accuracy of ex vivo MRI for human atherosclerotic plaque characterization. Arterioscler Thromb Vasc Biol 19:2756–2761CrossRefPubMedGoogle Scholar
  9. 9.
    Cai JM, Hatsukami TS, Ferguson MS, Small R, Polissar NL, Yuan C (2002) Classification of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation 106:1368–1373CrossRefPubMedGoogle Scholar
  10. 10.
    Qiao Y, Ronen I, Viereck J, Ruberg FL, Hamilton JA (2007) Identification of atherosclerotic lipid deposits by diffusion-weighted imaging. Arterioscler Thromb Vasc Biol 27:1440–1446. doi: 10.1161/ATVBAHA.107.141028 PubMedCentralCrossRefPubMedGoogle Scholar
  11. 11.
    Qiao Y, Hallock KJ, Hamilton JA (2011) Magnetization transfer magnetic resonance of human atherosclerotic plaques ex vivo detects areas of high protein density. J Cardiovasc Magn Reson 13:73. doi: 10.1186/1532-429X-13-73 PubMedCentralCrossRefPubMedGoogle Scholar
  12. 12.
    Müller A, Mu L, Meletta R, Beck K, Rancic Z, Drandarov K, Kaufmann PA, Ametamey SM, Schibli R, Borel N, Krämer SD (2014) Towards non-invasive imaging of vulnerable atherosclerotic plaques by targeting co-stimulatory molecules. Int J Cardiol 174:503–515. doi: 10.1016/j.ijcard.2014.04.071 CrossRefPubMedGoogle Scholar
  13. 13.
    Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W Jr, Rosenfeld ME, Schwartz CJ, Wagner WD, Wissler RW (1995) A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler Thromb Vasc Biol 15:1512–1531CrossRefPubMedGoogle Scholar
  14. 14.
    Saam T, Ferguson MS, Yarnykh VL, Takaya N, Xu D, Polissar NL, Hatsukami TS, Yuan C (2005) Quantitative evaluation of carotid plaque composition by in vivo MRI. Arterioscler Thromb Vasc Biol 25:234–239. doi: 10.1161/01.ATV.0000149867.61851.31 CrossRefPubMedGoogle Scholar
  15. 15.
    Lacolley P, Regnault V, Nicoletti A, Li Z, Michel JB (2012) The vascular smooth muscle cell in arterial pathology: a cell that can take on multiple roles. Cardiovasc Res 95:194–204. doi: 10.1093/cvr/cvs135 CrossRefPubMedGoogle Scholar
  16. 16.
    Riviere C, Boudghene FP, Gazeau F, Roger J, Pons JN, Laissy JP, Allaire E, Michel JB, Letourneur D, Deux JF (2005) Iron oxide nanoparticle-labeled rat smooth muscle cells: cardiac MR imaging for cell graft monitoring and quantitation. Radiology 235:959–967. doi: 10.1148/radiol.2353032057 CrossRefPubMedGoogle Scholar
  17. 17.
    Tavora F, Cresswell N, Li L, Ripple M, Burke A (2010) Immunolocalisation of fibrin in coronary atherosclerosis: implications for necrotic core development. Pathology 42:15–22. doi: 10.3109/00313020903434348 CrossRefPubMedGoogle Scholar
  18. 18.
    Coombs BD, Rapp JH, Ursell PC, Reilly LM, Saloner D (2001) Structure of plaque at carotid bifurcation: high-resolution MRI with histological correlation. Stroke 32:2516–2521CrossRefPubMedGoogle Scholar
  19. 19.
    Li T, Li X, Zhao X, Zhou W, Cai Z, Yang L, Guo A, Zhao S (2012) Classification of human coronary atherosclerotic plaques using ex vivo high-resolution multicontrast-weighted MRI compared with histopathology. AJR Am J Roentgenol 198:1069–1075. doi: 10.2214/AJR.11.6496 CrossRefPubMedGoogle Scholar
  20. 20.
    Nikolaou K, Becker CR, Muders M, Babaryka G, Scheidler J, Flohr T, Loehrs U, Reiser MF, Fayad ZA (2004) Multidetector-row computed tomography and magnetic resonance imaging of atherosclerotic lesions in human ex vivo coronary arteries. Atherosclerosis 174:243–252. doi: 10.1016/j.atherosclerosis.2004.01.041 CrossRefPubMedGoogle Scholar
  21. 21.
    Worthley SG, Helft G, Fuster V, Fayad ZA, Fallon JT, Osende JI, Roque M, Shinnar M, Zaman AG, Rodriguez OJ, Verhallen P, Badimon JJ (2000) High resolution ex vivo magnetic resonance imaging of in situ coronary and aortic atherosclerotic plaque in a porcine model. Atherosclerosis 150:321–329CrossRefPubMedGoogle Scholar
  22. 22.
    Gury-Paquet L, Millon A, Salami F, Cernicanu A, Scoazec JY, Douek P, Boussel L (2012) Carotid plaque high-resolution MRI at 3 T: evaluation of a new imaging score for symptomatic plaque assessment. Magn Reson Imaging 30:1424–1431. doi: 10.1016/j.mri.2012.04.024 CrossRefPubMedGoogle Scholar
  23. 23.
    Worthley SG, Helft G, Fuster V, Fayad ZA, Rodriguez OJ, Zaman AG, Fallon JT, Badimon JJ (2000) Noninvasive in vivo magnetic resonance imaging of experimental coronary artery lesions in a porcine model. Circulation 101:2956–2961CrossRefPubMedGoogle Scholar
  24. 24.
    Yuan C, Kerwin WS, Ferguson MS, Polissar N, Zhang S, Cai J, Hatsukami TS (2002) Contrast-enhanced high resolution MRI for atherosclerotic carotid artery tissue characterization. J Magn Reson Imaging 15:62–67CrossRefPubMedGoogle Scholar
  25. 25.
    Appel AA, Chou CY, Larson JC, Zhong Z, Schoen FJ, Johnston CM, Brey EM, Anastasio MA (2013) An initial evaluation of analyser-based phase-contrast X-ray imaging of carotid plaque microstructure. Br J Radiol 86:20120318. doi: 10.1259/bjr.20120318 PubMedCentralCrossRefPubMedGoogle Scholar
  26. 26.
    Hetterich H, Fill S, Herzen J, Willner M, Zanette I, Weitkamp T, Rack A, Schuller U, Sadeghi M, Brandl R, Adam-Neumair S, Reiser M, Pfeiffer F, Bamberg F, Saam T (2013) Grating-based X-ray phase-contrast tomography of atherosclerotic plaque at high photon energies. Z Med Phys 23:194–203. doi: 10.1016/j.zemedi.2012.12.001 CrossRefPubMedGoogle Scholar
  27. 27.
    Hetterich H, Willner M, Fill S, Herzen J, Bamberg F, Hipp A, Schuller U, Adam-Neumair S, Wirth S, Reiser M, Pfeiffer F, Saam T (2014) Phase-contrast CT: qualitative and quantitative evaluation of atherosclerotic carotid artery plaque. Radiology 271:870–878. doi: 10.1148/radiol.14131554 CrossRefPubMedGoogle Scholar
  28. 28.
    Saam T, Herzen J, Hetterich H, Fill S, Willner M, Stockmar M, Achterhold K, Zanette I, Weitkamp T, Schuller U, Auweter S, Adam-Neumair S, Nikolaou K, Reiser MF, Pfeiffer F, Bamberg F (2013) Translation of atherosclerotic plaque phase-contrast CT imaging from synchrotron radiation to a conventional lab-based X-ray source. PLoS One 8:e73513. doi: 10.1371/journal.pone.0073513 PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Fujimoto S, Kondo T, Kodama T, Fujisawa Y, Groarke J, Kumamaru KK, Takamura K, Matsunaga E, Miyauchi K, Daida H, Rybicki FJ (2014) A novel method for non-invasive plaque morphology analysis by coronary computed tomography angiography. Int J Cardiovasc Imaging 30:1373–1382. doi: 10.1007/s10554-014-0461-5 CrossRefPubMedGoogle Scholar
  30. 30.
    Donnelly EH, Nemhauser JB, Smith JM, Kazzi ZN, Farfan EB, Chang AS, Naeem SF (2010) Acute radiation syndrome: assessment and management. South Med J 103:541–546. doi: 10.1097/SMJ.0b013e3181ddd571 CrossRefPubMedGoogle Scholar
  31. 31.
    Corti R, Fuster V (2011) Imaging of atherosclerosis: magnetic resonance imaging. Eur Heart J 32:1709-19b. doi: 10.1093/eurheartj/ehr068 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Romana Meletta
    • 1
  • Nicole Borel
    • 2
  • Paul Stolzmann
    • 3
  • Alberto Astolfo
    • 4
  • Jan Klohs
    • 5
  • Marco Stampanoni
    • 4
  • Markus Rudin
    • 5
  • Roger Schibli
    • 1
  • Stefanie D. Krämer
    • 1
  • Adrienne Müller Herde
    • 1
    Email author
  1. 1.Department of Chemistry and Applied Biosciences of ETH ZurichCenter for Radiopharmaceutical Sciences ETH-PSI-USZZurichSwitzerland
  2. 2.Institute of Veterinary PathologyUniversity of ZurichZurichSwitzerland
  3. 3.Department of Medical ImagingUniversity Hospital ZurichZurichSwitzerland
  4. 4.Swiss Light SourcePaul Scherrer InstituteVilligen-PSISwitzerland
  5. 5.Institute for Biomedical Engineering, and Center for Neuroscience ResearchUniversity and ETH Zurich ETH ZurichZurichSwitzerland

Personalised recommendations