Myocardial T1 and T2 mapping in diastolic and systolic phase

  • Carlo Tessa
  • Stefano Diciotti
  • Nicholas Landini
  • Alessio Lilli
  • Jacopo Del Meglio
  • Luca Salvatori
  • Marco Giannelli
  • Andreas Greiser
  • Claudio Vignali
  • Giancarlo Casolo
Original Paper

Abstract

The aim of this study was to evaluate the regional (i.e. myocardial segments) variability as well as the overall image quality of cardiac T1 and T2 maps obtained in diastole and in systole. In 22 healthy subjects (group-1), diastolic T1 and T2 maps were obtained at 1.5T in short-axis view at basal, mid-ventricular and apical level, as well as in 4-chamber (4ch) and in 2-chamber (2ch) views. In another group of 25 patients (group-2), the maps were obtained in both diastole and systole. In the group-1, 15.4 % of myocardial segments in T1 maps and 0.8 % of myocardial segments in T2 maps, mainly located at apical level, showed relevant artifacts and/or partial-volume effect and had to be discarded. We found no significant difference in T1 values among basal, mid-ventricular and apical segments. T2 values at apical level were significantly higher than at basal and mid-ventricular level (short-axis, p < 0.0001; 4ch, p < 0.009; 2ch, p = 0.0002 at ANOVA tests). In the group-2, 21.1 %/5.3 % and 4.0 %/0.8 % of segments showed relevant artifacts in diastolic/systolic T1 and T2 maps, respectively. Apical T2 values were significantly lower in systole than in diastole. In systole, there were no significant differences in T1/T2 among basal, mid-ventricular and apical segments. The overall quality of T1 and T2 maps drops in apical segments. This could be problematic when evaluating focal myocardial changes. The acquisition in systole increases the number of evaluable segments.

Keywords

T1 mapping T2 mapping MOLLI Left ventricle 

References

  1. 1.
    Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman SV, Simonetti OP (2009) T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 11:56. doi:10.1186/1532-429X-11-56 Google Scholar
  2. 2.
    Messroghli DR, Plein S, Higgins DM, Walters K, Jones TR, Ridgway JP, Sivananthan MU (2006) Human myocardium: single-breath-hold MR T1 mapping with high spatial resolution—reproducibility study. Radiology 238(3):1004–1012. doi:10.1148/radiol.2382041903 CrossRefPubMedGoogle Scholar
  3. 3.
    Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP (2004) Modified Look-Locker inversion recovery (MOLLI) for high-resolution T1 mapping of the heart. Magn Reson Med Off J Soc Magn Reson Med 52(1):141–146. doi:10.1002/mrm.20110 CrossRefGoogle Scholar
  4. 4.
    Park CH, Choi EY, Kwon HM, Hong BK, Lee BK, Yoon YW, Min PK, Greiser A, Paek MY, Yu W, Sung YM, Hwang SH, Hong YJ, Kim TH (2013) Quantitative T2 mapping for detecting myocardial edema after reperfusion of myocardial infarction: validation and comparison with T2-weighted images. Int J Cardiovasc Imaging 29(Suppl 1):65–72. doi:10.1007/s10554-013-0256-0 CrossRefPubMedGoogle Scholar
  5. 5.
    Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajagopalan S, Simonetti OP, Raman SV (2011) Direct T2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imaging 4(3):269–278. doi:10.1016/j.jcmg.2010.09.023 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Zia MI, Ghugre NR, Connelly KA, Strauss BH, Sparkes JD, Dick AJ, Wright GA (2012) Characterizing myocardial edema and hemorrhage using quantitative T2 and T2* mapping at multiple time intervals post ST-segment elevation myocardial infarction. Circ Cardiovasc Imaging 5(5):566–572. doi:10.1161/CIRCIMAGING.112.973222 CrossRefPubMedGoogle Scholar
  7. 7.
    Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Ntusi N, Holloway C, Choudhury RP, Kardos A, Robson MD, Friedrich MG, Neubauer S (2013) T(1) mapping for the diagnosis of acute myocarditis using CMR: comparison to T2-weighted and late gadolinium enhanced imaging. JACC Cardiovasc Imaging 6(10):1048–1058. doi:10.1016/j.jcmg.2013.03.008 CrossRefPubMedGoogle Scholar
  8. 8.
    Thavendiranathan P, Walls M, Giri S, Verhaert D, Rajagopalan S, Moore S, Simonetti OP, Raman SV (2012) Improved detection of myocardial involvement in acute inflammatory cardiomyopathies using T2 mapping. Circ Cardiovasc Imaging 5(1):102–110. doi:10.1161/CIRCIMAGING.111.967836 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Ferreira VM, Piechnik SK, Dall’Armellina E, Karamitsos TD, Francis JM, Choudhury RP, Friedrich MG, Robson MD, Neubauer S (2012) Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 14:42. doi:10.1186/1532-429X-14-42 Google Scholar
  10. 10.
    Bull S, White SK, Piechnik SK, Flett AS, Ferreira VM, Loudon M, Francis JM, Karamitsos TD, Prendergast BD, Robson MD, Neubauer S, Moon JC, Myerson SG (2013) Human non-contrast T1 values and correlation with histology in diffuse fibrosis. Heart 99(13):932–937. doi:10.1136/heartjnl-2012-303052 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, McGregor C, Moon JC (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122(2):138–144. doi:10.1161/CIRCULATIONAHA.109.930636 CrossRefPubMedGoogle Scholar
  12. 12.
    Banypersad SM, Sado DM, Flett AS, Gibbs SD, Pinney JH, Maestrini V, Cox AT, Fontana M, Whelan CJ, Wechalekar AD, Hawkins PN, Moon JC (2013) Quantification of myocardial extracellular volume fraction in systemic AL amyloidosis: an equilibrium contrast cardiovascular magnetic resonance study. Circ Cardiovasc Imaging 6(1):34–39. doi:10.1161/CIRCIMAGING.112.978627 CrossRefPubMedGoogle Scholar
  13. 13.
    Fontana M, Banypersad SM, Treibel TA, Maestrini V, Sado DM, White SK, Pica S, Castelletti S, Piechnik SK, Robson MD, Gilbertson JA, Rowczenio D, Hutt DF, Lachmann HJ, Wechalekar AD, Whelan CJ, Gillmore JD, Hawkins PN, Moon JC (2014) Native T1 mapping in transthyretin amyloidosis. JACC Cardiovasc Imaging 7(2):157–165. doi:10.1016/j.jcmg.2013.10.008 CrossRefPubMedGoogle Scholar
  14. 14.
    Karamitsos TD, Piechnik SK, Banypersad SM, Fontana M, Ntusi NB, Ferreira VM, Whelan CJ, Myerson SG, Robson MD, Hawkins PN, Neubauer S, Moon JC (2013) Noncontrast T1 mapping for the diagnosis of cardiac amyloidosis. JACC Cardiovasc Imaging 6(4):488–497. doi:10.1016/j.jcmg.2012.11.013 CrossRefPubMedGoogle Scholar
  15. 15.
    Robbers LF, Baars EN, Brouwer WP, Beek AM, Hofman MB, Niessen HW, van Rossum AC, Marcu CB (2012) T1 mapping shows increased extracellular matrix size in the myocardium due to amyloid depositions. Circ Cardiovasc Imaging 5(3):423–426. doi:10.1161/CIRCIMAGING.112.973438 CrossRefPubMedGoogle Scholar
  16. 16.
    Chin CW, Semple S, Malley T, White AC, Mirsadraee S, Weale PJ, Prasad S, Newby DE, Dweck MR (2014) Optimization and comparison of myocardial T1 techniques at 3T in patients with aortic stenosis. Eur Heart J Cardiovasc Imaging 15(5):556–565. doi:10.1093/ehjci/jet245 CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Kawel N, Nacif M, Zavodni A, Jones J, Liu S, Sibley CT, Bluemke DA (2012) T1 mapping of the myocardium: intra-individual assessment of the effect of field strength, cardiac cycle and variation by myocardial region. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 14:27. doi:10.1186/1532-429X-14-27 Google Scholar
  18. 18.
    Kellman P, Arai AE, Xue H (2013) T1 and extracellular volume mapping in the heart: estimation of error maps and the influence of noise on precision. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 15:56. doi:10.1186/1532-429X-15-56 Google Scholar
  19. 19.
    Kellman P, Hansen MS (2014) T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 16:2. doi:10.1186/1532-429X-16-2 Google Scholar
  20. 20.
    Kellman P, Herzka DA, Arai AE, Hansen MS (2013) Influence of Off-resonance in myocardial T1-mapping using SSFP based MOLLI method. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 15:63. doi:10.1186/1532-429X-15-63 Google Scholar
  21. 21.
    Raman FS, Kawel-Boehm N, Gai N, Freed M, Han J, Liu CY, Lima JA, Bluemke DA, Liu S (2013) Modified look-locker inversion recovery T1 mapping indices: assessment of accuracy and reproducibility between magnetic resonance scanners. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 15:64. doi:10.1186/1532-429X-15-64 Google Scholar
  22. 22.
    Roujol S, Weingartner S, Foppa M, Chow K, Kawaji K, Ngo LH, Kellman P, Manning WJ, Thompson RB, Nezafat R (2014) Accuracy, precision, and reproducibility of four T1 mapping sequences: a head-to-head comparison of MOLLI, ShMOLLI, SASHA, and SAPPHIRE. Radiology 272(3):683–689. doi:10.1148/radiol.14140296 CrossRefPubMedGoogle Scholar
  23. 23.
    von Knobelsdorff-Brenkenhoff F, Prothmann M, Dieringer MA, Wassmuth R, Greiser A, Schwenke C, Niendorf T, Schulz-Menger J (2013) Myocardial T1 and T2 mapping at 3 T: reference values, influencing factors and implications. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 15:53. doi:10.1186/1532-429X-15-53 Google Scholar
  24. 24.
    Wassmuth R, Prothmann M, Utz W, Dieringer M, von Knobelsdorff-Brenkenhoff F, Greiser A, Schulz-Menger J (2013) Variability and homogeneity of cardiovascular magnetic resonance myocardial T2-mapping in volunteers compared to patients with edema. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 15:27. doi:10.1186/1532-429X-15-27 Google Scholar
  25. 25.
    Piechnik SK, Ferreira VM, Lewandowski AJ, Ntusi NA, Banerjee R, Holloway C, Hofman MB, Sado DM, Maestrini V, White SK, Lazdam M, Karamitsos T, Moon JC, Neubauer S, Leeson P, Robson MD (2013) Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 15:13. doi:10.1186/1532-429X-15-13 Google Scholar
  26. 26.
    Kawel-Boehm N, Dellas Buser T, Greiser A, Bieri O, Bremerich J, Santini F (2014) In-vivo assessment of normal T1 values of the right-ventricular myocardium by cardiac MRI. Int J Cardiovasc Imaging 30(2):323–328. doi:10.1007/s10554-013-0326-3 CrossRefPubMedGoogle Scholar
  27. 27.
    Reiter U, Reiter G, Dorr K, Greiser A, Maderthaner R, Fuchsjager M (2014) Normal diastolic and systolic myocardial T1 values at 1.5-T MR imaging: correlations and blood normalization. Radiology 271(2):365–372. doi:10.1148/radiol.13131225 CrossRefPubMedGoogle Scholar
  28. 28.
    Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB, Society for Cardiovascular Magnetic Resonance I, Cardiovascular Magnetic Resonance Working Group of the European Society of C (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 15:92. doi:10.1186/1532-429X-15-92 Google Scholar
  29. 29.
    Xue H, Shah S, Greiser A, Guetter C, Littmann A, Jolly MP, Arai AE, Zuehlsdorff S, Guehring J, Kellman P (2012) Motion correction for myocardial T1 mapping using image registration with synthetic image estimation. Magn Reson Med Off J Soc Magn Reson Med 67(6):1644–1655. doi:10.1002/mrm.23153 CrossRefGoogle Scholar
  30. 30.
    Messroghli DR, Greiser A, Frohlich M, Dietz R, Schulz-Menger J (2007) Optimization and validation of a fully-integrated pulse sequence for modified look-locker inversion-recovery (MOLLI) T1 mapping of the heart. J Magn Reson Imaging JMRI 26(4):1081–1086. doi:10.1002/jmri.21119 CrossRefGoogle Scholar
  31. 31.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS, American Heart Association Writing Group on Myocardial S, Registration for Cardiac I (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. A statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542CrossRefPubMedGoogle Scholar
  32. 32.
    Bland MJ, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurements. Lancet 327(8476):307–310. doi:10.1016/S0140-6736(86)90837-8 CrossRefGoogle Scholar
  33. 33.
    Bonner F, Janzarik N, Jacoby C, Spieker M, Schnackenburg B, Range F, Butzbach B, Haberkorn S, Westenfeld R, Neizel-Wittke M, Flogel U, Kelm M (2015) Myocardial T2 mapping reveals age- and sex-related differences in volunteers. J Cardiovasc Magn Reson Off J Soc Cardiovasc Magn Reson 17(1):9. doi:10.1186/s12968-015-0118-0 Google Scholar
  34. 34.
    Judd RM, Levy BI (1991) Effects of barium-induced cardiac contraction on large- and small-vessel intramyocardial blood volume. Circ Res 68(1):217–225CrossRefPubMedGoogle Scholar
  35. 35.
    Toyota E, Fujimoto K, Ogasawara Y, Kajita T, Shigeto F, Matsumoto T, Goto M, Kajiya F (2002) Dynamic changes in three-dimensional architecture and vascular volume of transmural coronary microvasculature between diastolic- and systolic-arrested rat hearts. Circulation 105(5):621–626CrossRefPubMedGoogle Scholar
  36. 36.
    Wu EX, Tang H, Wong KK, Wang J (2004) Mapping cyclic change of regional myocardial blood volume using steady-state susceptibility effect of iron oxide nanoparticles. J Magn Reson Imaging JMRI 19(1):50–58. doi:10.1002/jmri.10426 CrossRefGoogle Scholar
  37. 37.
    Pattanayak P, Bluemke DA (2014) Cardiac MR imaging to probe tissue composition of the heart by using T1 mapping. Radiology 271(2):320–322. doi:10.1148/radiol.14140287 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT, White JA, Abdel-Aty H, Gutberlet M, Prasad S, Aletras A, Laissy JP, Paterson I, Filipchuk NG, Kumar A, Pauschinger M, Liu P, International Consensus Group on Cardiovascular Magnetic Resonance in M (2009) Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53(17):1475–1487. doi:10.1016/j.jacc.2009.02.007 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Carlo Tessa
    • 1
  • Stefano Diciotti
    • 2
  • Nicholas Landini
    • 3
  • Alessio Lilli
    • 4
  • Jacopo Del Meglio
    • 4
  • Luca Salvatori
    • 1
  • Marco Giannelli
    • 5
  • Andreas Greiser
    • 6
  • Claudio Vignali
    • 1
  • Giancarlo Casolo
    • 4
  1. 1.Department of RadiologyVersilia HospitalLido di CamaioreItaly
  2. 2.Department of Electrical, Electronic, and Information Engineering “Guglielmo Marconi”University of BolognaCesenaItaly
  3. 3.“Mario Serio” Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
  4. 4.Department of CardiologyVersilia HospitalLido di CamaioreItaly
  5. 5.Unit of Medical PhysicsPisa University Hospital “Azienda Ospedaliero-Universitaria Pisana”PisaItaly
  6. 6.Siemens HealthcareErlangenGermany

Personalised recommendations