Advertisement

Extracellular volume fraction in dilated cardiomyopathy patients without obvious late gadolinium enhancement: comparison with healthy control subjects

  • Yoo Jin Hong
  • Chul Hwan Park
  • Young Jin Kim
  • Jin Hur
  • Hye-Jeong Lee
  • Sae Rom Hong
  • Young Joo Suh
  • Andreas Greiser
  • Mun Young Paek
  • Byoung Wook Choi
  • Tae Hoon KimEmail author
Original Paper

Abstract

To evaluate whether the extracellular volume fraction (ECV) measured using cardiac magnetic resonance (CMR) imaging can detect myocardial tissue changes in dilated cardiomyopathy (DCM) without late gadolinium enhancement (LGE). Forty-one DCM patients and 10 healthy volunteers underwent pre- and post-T1 mapping using a modified Look-Locker Inversion recovery sequence, LGE, and cine MRI on a 3-T CMR system. LGE-MR findings were used to divide DCM patients into two groups: Group A had no apparent LGE, and Group B had LGE apparent in at least one segment. The ECV of the left ventricle (LV) myocardium (16 segments) was calculated in the short-axis view as follows: ECV = [(ΔR1 of myocardium/ΔR1 of LV blood pool)] × (1 − hematocrit), where R1 = 1/T1, ΔR1 = post-contrast R1 − pre-contrast R1. The LV ejection fraction (LVEF) was obtained from cine MRI images. The mean myocardial ECV in LGE (−) segments in Group A + B was compared to that of controls. The mean myocardial ECV in Group A was compared to that of LGE (−) segments in Group B. The correlation between LV systolic function and the mean myocardial ECV of the whole myocardium was evaluated in all groups. Among the 41 DCM patients, 22 were in Group A, and 19 were in Group B. The mean ECV of DCM patents (n = 41, 568 segments, 30.7 % ± 5.9) was significantly higher (P < 0.001) than that of the control group (n = 10, 157 segments, 25.6 % ± 3.2). The ECV was inversely related to LVEF in Group A (r = −0.551, P = 0.008), Group B (r = −0.525, P = 0.021), and Group A + B (r = −0.550, P < 0.001). The ECV measured by MRI could be a useful parameter in evaluating diffuse myocardial changes in DCM patients.

Keywords

Cardiomyopathy Dilated Extracellular space Magnetic resonance imaging Gadolinium Fibrosis Myocardium T1 mapping 

Abbreviations

CMR

Cardiac magnetic resonance

DCM

Dilated cardiomyopathy

ECV

Extracellular volume fraction

LGE

Late gadolinium enhancement

LV

Left ventricle

LVEDD

Left-ventricular end-diastolic diameter

LVEF

Left-ventricular ejection fraction

MOLLI

Modified Look-Locker Inversion recovery

PSIR

Phase-sensitive inversion recovery

RV

Right ventricle

Notes

Acknowledgments

This work was supported by a faculty research grant of Yonsei University College of Medicine for 2011 (6-2011-0190).

Conflict of interest

None.

References

  1. 1.
    Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, Kaye DM, Taylor AJ (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52(19):1574–1580PubMedCrossRefGoogle Scholar
  2. 2.
    Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB, American Heart A, Council on Clinical Cardiology HF, Transplantation C, Quality of C, Outcomes R, Functional G, Translational Biology Interdisciplinary Working G, Council on E, Prevention (2006) Contemporary definitions and classification of the cardiomyopathies: an American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation 113(14):1807–1816Google Scholar
  3. 3.
    Harris SR, Glockner J, Misselt AJ, Syed IS, Araoz PA (2008) Cardiac MR imaging of nonischemic cardiomyopathies. Magn Reson Imaging Clin N Am 16(2):165–183PubMedCrossRefGoogle Scholar
  4. 4.
    O’Donnell DH, Abbara S, Chaithiraphan V, Yared K, Killeen RP, Martos R, Keane D, Cury RC, Dodd JD (2012) Cardiac MR imaging of nonischemic cardiomyopathies: imaging protocols and spectra of appearances. Radiology 262(2):403–422PubMedCrossRefGoogle Scholar
  5. 5.
    Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA (2011) Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol 57(8):891–903PubMedCrossRefGoogle Scholar
  6. 6.
    Maisch B (1996) Ventricular remodeling. Cardiology 87(Suppl 1):2–10PubMedCrossRefGoogle Scholar
  7. 7.
    Sun Y, Weber KT (1998) Cardiac remodelling by fibrous tissue: role of local factors and circulating hormones. Ann Med 30(Suppl 1):3–8PubMedGoogle Scholar
  8. 8.
    McCrohon JA, Moon JC, Prasad SK, McKenna WJ, Lorenz CH, Coats AJ, Pennell DJ (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108(1):54–59PubMedCrossRefGoogle Scholar
  9. 9.
    Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, Sheppard MN, Poole-Wilson PA, Pennell DJ (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48(10):1977–1985PubMedCrossRefGoogle Scholar
  10. 10.
    Gulati A, Jabbour A, Ismail TF, Guha K, Khwaja J, Raza S, Morarji K, Brown TD, Ismail NA, Dweck MR, Di Pietro E, Roughton M, Wage R, Daryani Y, O’Hanlon R, Sheppard MN, Alpendurada F, Lyon AR, Cook SA, Cowie MR, Assomull RG, Pennell DJ, Prasad SK (2013) Association of fibrosis with mortality and sudden cardiac death in patients with nonischemic dilated cardiomyopathy. JAMA 309(9):896–908PubMedCrossRefGoogle Scholar
  11. 11.
    Deckers JW, Hare JM, Baughman KL (1992) Complications of transvenous right ventricular endomyocardial biopsy in adult patients with cardiomyopathy: a seven-year survey of 546 consecutive diagnostic procedures in a tertiary referral center. J Am Coll Cardiol 19(1):43–47PubMedCrossRefGoogle Scholar
  12. 12.
    From AM, Maleszewski JJ, Rihal CS (2011) Current status of endomyocardial biopsy. Mayo Clin Proc 86(11):1095–1102PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Ugander M, Oki AJ, Hsu LY, Kellman P, Greiser A, Aletras AH, Sibley CT, Chen MY, Bandettini WP, Arai AE (2012) Extracellular volume imaging by magnetic resonance imaging provides insights into overt and sub-clinical myocardial pathology. Eur Heart J 33(10):1268–1278PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Kellman P, Wilson JR, Xue H, Bandettini WP, Shanbhag SM, Druey KM, Ugander M, Arai AE (2012) Extracellular volume fraction mapping in the myocardium, part 2: initial clinical experience. J Cardiovasc Magn Reson 14:64PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Sado DM, Flett AS, Banypersad SM, White SK, Maestrini V, Quarta G, Lachmann RH, Murphy E, Mehta A, Hughes DA, McKenna WJ, Taylor AM, Hausenloy DJ, Hawkins PN, Elliott PM, Moon JC (2012) Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 98(19):1436–1441PubMedCrossRefGoogle Scholar
  16. 16.
    Lalande A, Salve N, Comte A, Jaulent MC, Legrand L, Walker PM, Cottin Y, Wolf JE, Brunotte F (2004) Left ventricular ejection fraction calculation from automatically selected and processed diastolic and systolic frames in short-axis cine-MRI. J Cardiovasc Magn Reson 6(4):817–827PubMedCrossRefGoogle Scholar
  17. 17.
    Baldy C, Douek P, Croisille P, Magnin IE, Revel D, Amiel M (1994) Automated myocardial edge detection from breath-hold cine-MR images: evaluation of left ventricular volumes and mass. Magn Reson Imaging 12(4):589–598PubMedCrossRefGoogle Scholar
  18. 18.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS, American Heart Association Writing Group on Myocardial S, Registration for Cardiac I (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4):539–542PubMedCrossRefGoogle Scholar
  19. 19.
    Moon JC, Messroghli DR, Kellman P, Piechnik SK, Robson MD, Ugander M, Gatehouse PD, Arai AE, Friedrich MG, Neubauer S, Schulz-Menger J, Schelbert EB, Society for Cardiovascular Magnetic Resonance I, Cardiovascular Magnetic Resonance Working Group of the European Society of C (2013) Myocardial T1 mapping and extracellular volume quantification: a Society for Cardiovascular Magnetic Resonance (SCMR) and CMR Working Group of the European Society of Cardiology consensus statement. J Cardiovasc Magn Reson 15:92CrossRefGoogle Scholar
  20. 20.
    Piechnik SK, Ferreira VM, Lewandowski AJ, Ntusi NA, Banerjee R, Holloway C, Hofman MB, Sado DM, Maestrini V, White SK, Lazdam M, Karamitsos T, Moon JC, Neubauer S, Leeson P, Robson MD (2013) Normal variation of magnetic resonance T1 relaxation times in the human population at 1.5 T using ShMOLLI. J Cardiovasc Magn Reson 15:13PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Wu KC, Weiss RG, Thiemann DR, Kitagawa K, Schmidt A, Dalal D, Lai S, Bluemke DA, Gerstenblith G, Marban E, Tomaselli GF, Lima JA (2008) Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 51(25):2414–2421PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Mongeon FP, Jerosch-Herold M, Coelho-Filho OR, Blankstein R, Falk RH, Kwong RY (2012) Quantification of extracellular matrix expansion by CMR in infiltrative heart disease. JACC Cardiovasc Imaging 5(9):897–907PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Green JJ, Berger JS, Kramer CM, Salerno M (2012) Prognostic value of late gadolinium enhancement in clinical outcomes for hypertrophic cardiomyopathy. JACC Cardiovasc Imaging 5(4):370–377PubMedCrossRefGoogle Scholar
  24. 24.
    Lee JJ, Liu S, Nacif MS, Ugander M, Han J, Kawel N, Sibley CT, Kellman P, Arai AE, Bluemke DA (2011) Myocardial T1 and extracellular volume fraction mapping at 3 tesla. J Cardiovasc Magn Reson 13:75PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, McGregor C, Moon JC (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122(2):138–144PubMedCrossRefGoogle Scholar
  26. 26.
    Klein C, Nekolla SG, Balbach T, Schnackenburg B, Nagel E, Fleck E, Schwaiger M (2004) The influence of myocardial blood flow and volume of distribution on late Gd-DTPA kinetics in ischemic heart failure. J Magn Reson Imaging 20(4):588–593PubMedCrossRefGoogle Scholar
  27. 27.
    Miller CA, Naish JH, Bishop P, Coutts G, Clark D, Zhao S, Ray SG, Yonan N, Williams SG, Flett AS, Moon JC, Greiser A, Parker GJ, Schmitt M (2013) Comprehensive validation of cardiovascular magnetic resonance techniques for the assessment of myocardial extracellular volume. Circ Cardiovasc Imaging 6(3):373–383PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yoo Jin Hong
    • 1
  • Chul Hwan Park
    • 2
  • Young Jin Kim
    • 1
  • Jin Hur
    • 1
  • Hye-Jeong Lee
    • 1
  • Sae Rom Hong
    • 1
  • Young Joo Suh
    • 1
  • Andreas Greiser
    • 3
  • Mun Young Paek
    • 4
  • Byoung Wook Choi
    • 1
  • Tae Hoon Kim
    • 2
    Email author
  1. 1.Department of Radiology, Research Institute of Radiological Science, Severance HospitalYonsei University Medical CenterSeoulSouth Korea
  2. 2.Department of Radiology, Research Institute of Radiological Science, Gangnam Severance HospitalYonsei University Medical CenterSeoulKorea
  3. 3.Siemens AG Healthcare SectorErlangenGermany
  4. 4.Siemens HealthcareSeoulRepublic of Korea

Personalised recommendations