The International Journal of Cardiovascular Imaging

, Volume 30, Issue 8, pp 1473–1481 | Cite as

Global endocardial area change rate for the assessment of left ventricular relaxation and filling pressure: using 3-dimensional speckle-tracking study

  • Kazuhiro Tatsumi
  • Hidekazu Tanaka
  • Kensuke Matsumoto
  • Takuma Sawa
  • Tatsuya Miyoshi
  • Junichi Imanishi
  • Yoshiki Motoji
  • Yasuhide Mochizuki
  • Yuko Fukuda
  • Toshiro Shinke
  • Ken-ichi Hirata
Original Paper

Abstract

Early diastolic mitral inflow and annulus velocities ratio (E/e’) is the parameter used to estimate left ventricular (LV) filling pressure, but their use for patients with reduced ejection fraction (EF) (<50 %) is controversial. LV endocardial area change rate with 3-dimensional (3-D) speckle-tracking can be used to evaluate the entire LV diastolic function, we tested the hypothesis that the early diastolic area change rate (E-ACR) represents LV relaxation, and E and E-ACR ratio (E/E-ACR) can accurately predict LV filling pressure in patients with reduced and preserved EF (≥50 %). We studied 125 patients with EF of 40 ± 17 %. E-ACR of all patients was measured using the global area change rate, and LV relaxation time constant (τ, n = 53) and pulmonary capillary wedge pressure (PCWP, n = 125) were measured by cardiac catheterization. E-ACR significantly correlated with τ (r = −0.60, p < 0.001). In the retrospective group (n = 101), E/E-ACR correlated with PCWP for patients with reduced EF as well as those with preserved EF (n = 79 and 22, r = 0.62 and 0.81, both p < 0.001). In overall patients, E/E-ACR ≥94 cm was a better predictor of elevated mean PCWP (>12 mmHg) (sensitivity: 69 %, specificity: 87 %, areas under the curves = 0.82; p < 0.001) and was a more accurate predictor than E/e’ (p = 0.001) for the retrospective group. For the validation group (n = 24), E/E-ACR ≥94 cm was similarly predictive for elevated mean PCWP (sensitivity: 60 %, specificity: 100 %, positive predictive value: 100 %, negative predictive value: 78 %). In conclusions, global E-ACR by 3-D speckle-tracking proved to be dependent on LV relaxation. Moreover, E/E-ACR was found to be a powerful predictor of LV filling pressure regardless of EF.

Keywords

Filling pressure Heart failure 3-dimensional speckle-tracking echocardiography Left ventricular relaxation 

References

  1. 1.
    Paulus WJ, Tschope C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE, Marino P, Smiseth OA, De Keulenaer G, Leite-Moreira AF, Borbely A, Edes I, Handoko ML, Heymans S, Pezzali N, Pieske B, Dickstein K, Fraser AG, Brutsaert DL (2007) How to diagnose diastolic heart failure: a consensus statement on the diagnosis of heart failure with normal left ventricular ejection fraction by the Heart Failure and Echocardiography Associations of the European Society of Cardiology. Eur Heart J 28(20):2539–2550PubMedCrossRefGoogle Scholar
  2. 2.
    Dini FL, Lattanzi F, Fontanive P, Rosa GM, De Tommasi SM (2009) Value of tissue Doppler imaging for risk stratification of patients with chronic systolic heart failure with or without restrictive mitral flow. Eur J Echocardiogr 10(4):562–566PubMedCrossRefGoogle Scholar
  3. 3.
    Mullens W, Borowski AG, Curtin RJ, Thomas JD, Tang WH (2009) Tissue Doppler imaging in the estimation of intracardiac filling pressure in decompensated patients with advanced systolic heart failure. Circulation 119(1):62–70PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Wang J, Khoury DS, Thohan V, Torre-Amione G, Nagueh SF (2007) Global diastolic strain rate for the assessment of left ventricular relaxation and filling pressures. Circulation 115(11):1376–1383PubMedCrossRefGoogle Scholar
  5. 5.
    Dokainish H, Sengupta R, Pillai M, Bobek J, Lakkis N (2008) Usefulness of new diastolic strain and strain rate indexes for the estimation of left ventricular filling pressure. Am J Cardiol 101(10):1504–1509PubMedCrossRefGoogle Scholar
  6. 6.
    Kasner M, Gaub R, Sinning D, Westermann D, Steendijk P, Hoffmann W, Schultheiss HP, Tschope C (2010) Global strain rate imaging for the estimation of diastolic function in HFNEF compared with pressure-volume loop analysis. Eur J Echocardiogr 11(9):743–751PubMedCrossRefGoogle Scholar
  7. 7.
    Meluzin J, Spinarova L, Hude P, Krejci J, Podrouzkova H, Pesl M, Orban M, Dusek L, Jarkovsky J, Korinek J (2011) Estimation of left ventricular filling pressures by speckle tracking echocardiography in patients with idiopathic dilated cardiomyopathy. Eur J Echocardiogr 12(1):11–18PubMedCrossRefGoogle Scholar
  8. 8.
    Seo Y, Ishizu T, Enomoto Y, Sugimori H, Yamamoto M, Machino T, Kawamura R, Aonuma K (2009) Validation of 3-dimensional speckle tracking imaging to quantify regional myocardial deformation. Circ Cardiovasc Imaging 2(6):451–459PubMedCrossRefGoogle Scholar
  9. 9.
    Seo Y, Ishizu T, Enomoto Y, Sugimori H, Aonuma K (2011) Endocardial surface area tracking for assessment of regional LV wall deformation with 3D speckle tracking imaging. JACC Cardiovasc Imaging 4(4):358–365PubMedCrossRefGoogle Scholar
  10. 10.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise JS, Solomon SD, Spencer KT, Sutton MS, Stewart WJ, Chamber Quantification Writing G, American Society of Echocardiography’s G, Standards C, European Association of E (2005) Recommendations for chamber quantification: a report from the American Society of Echocardiography’s Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association of Echocardiography, a branch of the European Society of Cardiology. J Am Soc Echocardiogr 18(12):1440–1463PubMedCrossRefGoogle Scholar
  11. 11.
    Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP, 3rd, Guyton RA, O’Gara PT, Ruiz CE, Skubas NJ, Sorajja P, Sundt TM, 3rd, Thomas JD (2014) 2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. CirculationGoogle Scholar
  12. 12.
    Wada Y, Murata K, Tanaka T, Nose Y, Kihara C, Uchida K, Okuda S, Susa T, Kishida Y, Matsuzaki M (2012) Simultaneous Doppler tracing of transmitral inflow and mitral annular velocity as an estimate of elevated left ventricular filling pressure in patients with atrial fibrillation. Circ J 76(3):675–681PubMedCrossRefGoogle Scholar
  13. 13.
    Makita Y, Okamoto M, Yoshida N, Hashimoto M, Shintani Y, Kajihara K, Nakano Y, Kihara Y (2011) The origin and clinical significance of the signal opposite to the mitral E-wave: a simple and novel indicator of left ventricular filling pressure. Echocardiography 28(6):606–611PubMedCrossRefGoogle Scholar
  14. 14.
    Sundereswaran L, Nagueh SF, Vardan S, Middleton KJ, Zoghbi WA, Quinones MA, Torre-Amione G (1998) Estimation of left and right ventricular filling pressures after heart transplantation by tissue Doppler imaging. Am J Cardiol 82(3):352–357PubMedCrossRefGoogle Scholar
  15. 15.
    Ommen SR, Nishimura RA, Appleton CP, Miller FA, Oh JK, Redfield MM, Tajik AJ (2000) Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: a comparative simultaneous Doppler-catheterization study. Circulation 102(15):1788–1794PubMedCrossRefGoogle Scholar
  16. 16.
    Nagueh SF, Sun H, Kopelen HA, Middleton KJ, Khoury DS (2001) Hemodynamic determinants of the mitral annulus diastolic velocities by tissue Doppler. J Am Coll Cardiol 37(1):278–285PubMedCrossRefGoogle Scholar
  17. 17.
    Nagueh SF, Middleton KJ, Kopelen HA, Zoghbi WA, Quinones MA (1997) Doppler tissue imaging: a noninvasive technique for evaluation of left ventricular relaxation and estimation of filling pressures. J Am Coll Cardiol 30(6):1527–1533PubMedCrossRefGoogle Scholar
  18. 18.
    Nagueh SF, Mikati I, Kopelen HA, Middleton KJ, Quinones MA, Zoghbi WA (1998) Doppler estimation of left ventricular filling pressure in sinus tachycardia. A new application of tissue doppler imaging. Circulation 98(16):1644–1650PubMedCrossRefGoogle Scholar
  19. 19.
    Dokainish H, Zoghbi WA, Lakkis NM, Al-Bakshy F, Dhir M, Quinones MA, Nagueh SF (2004) Optimal noninvasive assessment of left ventricular filling pressures: a comparison of tissue Doppler echocardiography and B-type natriuretic peptide in patients with pulmonary artery catheters. Circulation 109(20):2432–2439PubMedCrossRefGoogle Scholar
  20. 20.
    Geske JB, Sorajja P, Nishimura RA, Ommen SR (2007) Evaluation of left ventricular filling pressures by Doppler echocardiography in patients with hypertrophic cardiomyopathy: correlation with direct left atrial pressure measurement at cardiac catheterization. Circulation 116(23):2702–2708PubMedCrossRefGoogle Scholar
  21. 21.
    Olson JJ, Costa SP, Young CE, Palac RT (2006) Early mitral filling/diastolic mitral annular velocity ratio is not a reliable predictor of left ventricular filling pressure in the setting of severe mitral regurgitation. J Am Soc Echocardiogr 19(1):83–87PubMedCrossRefGoogle Scholar
  22. 22.
    Ha JW, Oh JK, Ling LH, Nishimura RA, Seward JB, Tajik AJ (2001) Annulus paradoxus: transmitral flow velocity to mitral annular velocity ratio is inversely proportional to pulmonary capillary wedge pressure in patients with constrictive pericarditis. Circulation 104(9):976–978PubMedCrossRefGoogle Scholar
  23. 23.
    Nagueh SF, Appleton CP, Gillebert TC, Marino PN, Oh JK, Smiseth OA, Waggoner AD, Flachskampf FA, Pellikka PA, Evangelista A (2009) Recommendations for the evaluation of left ventricular diastolic function by echocardiography. J Am Soc Echocardiogr 22(2):107–133PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Kazuhiro Tatsumi
    • 1
  • Hidekazu Tanaka
    • 1
  • Kensuke Matsumoto
    • 1
  • Takuma Sawa
    • 1
  • Tatsuya Miyoshi
    • 1
  • Junichi Imanishi
    • 1
  • Yoshiki Motoji
    • 1
  • Yasuhide Mochizuki
    • 1
  • Yuko Fukuda
    • 1
  • Toshiro Shinke
    • 1
  • Ken-ichi Hirata
    • 1
  1. 1.Division of Cardiovascular Medicine, Department of Internal MedicineKobe University Graduate School of MedicineKobeJapan

Personalised recommendations