Advertisement

Early diastolic strain rate predicts response to heart failure therapy in patients with dilated cardiomyopathy

  • Björn GoebelEmail author
  • Kristina H. Haugaa
  • Kathleen Meyer
  • Sylvia Otto
  • Christian Jung
  • Alexander Lauten
  • Hans R. Figulla
  • Thor Edvardsen
  • Tudor C. Poerner
Original Paper

Abstract

The aim of this prospective study was to assess the value of speckle tracking echocardiographic (2D-STE) parameters to predict response to heart failure therapy in patients with dilated cardiomyopathy (DCM). Eighty-seven patients (mean age 51 ± 13 years) with DCM, defined as ejection fraction (EF) <45 %, left ventricular (LV) end-diastolic diameter >112 % of normal range derived from age and body surface area. Based on 2D-STE following parameters were extracted from three apical views of the LV: global longitudinal strain, systolic and diastolic strain rate (SRE). Mechanical dispersion was calculated as standard deviation of time-to-peak strain values including all LV segments. After receiving heart failure therapy (mean 39 ± 11 months, range 3–60 months) 50 patients reached combined endpoint defined as following: death, heart transplantation, rehospitalization due to heart failure, and absence of improvement in EF. On stepwise multivariate regression analysis, SRE was independently of EF and LV volumes predictive for combined endpoint (OR 0.44, 95 %CI 0.27–0.70, p = 0.001) with an area under the ROC-curve (AUC) of 0.91. In patients with cQRS duration ≤120 ms mechanical dispersion was predictive for combined endpoint with the highest AUC (OR 1.53, 95 %CI 1.08–2.16, p = 0.002; AUC = 0.94). In this study, SRE, a surrogate parameter of myocardial relaxation, was able to predict a response to heart failure therapy in patients with DCM. In patients with narrow QRS complex, mechanical dispersion yielded the highest predictive value. Parameters of 2D-STE may contribute to risk stratification in this patient population.

Keywords

Dilated cardiomyopathy Speckle tracking echocardiography Heart failure therapy 

Notes

Conflict of interest

The authors have no conflicts of interest to disclose.

References

  1. 1.
    Bänsch D, Antz M, Boczor S, Volkmer M, Tebbenjohanns J, Seidl K, Block M, Gietzen F, Berger J, Kuck KH (2012) Primary prevention of sudden cardiac death in idiopathic dilated cardiomyopathy: the cardiomyopathy trial (CAT). Europace 14(12):1740–1745. doi: 10.1093/europace/eus172 CrossRefGoogle Scholar
  2. 2.
    Cicoira M, Zanolla L, Latina L, Rossi A, Golia G, Brighetti G, Zardini P (2001) Frequency, prognosis and predictors of improvement of left ventricular function in patients with classical clinical diagnosis of idiopathic dilated cardiomyopathy. Eur J Heart Fail 3(3):323–330. doi: 10.1016/S1388-9842(00)00150-1 PubMedCrossRefGoogle Scholar
  3. 3.
    Kaluzynski K, Chen X, Emelianov SY, Skovoroda AR, O’Donnell M (2001) Strain rate imaging using two-dimensional speckle tracking. IEEE Trans Ultrason Ferroelectr Freq Control 48(4):1111–1123PubMedCrossRefGoogle Scholar
  4. 4.
    Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover R, Vered Z (2004) Two dimensional strains-a novel software for real-time quantitative echocardiographic assessment of myocardial function. J Am Soc Echocardiogr 17(10):1021–1029. doi: 10.1016/j.echo.2004.06.019 PubMedCrossRefGoogle Scholar
  5. 5.
    Edvardsen T, Gerber BL, Garot J, Bluemke DA, Lima JA, Smiseth OA (2002) Quantitative assessment of intrinsic regional myocardial deformation by Doppler strain rate echocardiography in humans: validation against three-dimensional tagged magnetic resonance imaging. Circulation 106(1):50–56. doi: 10.1161/01.CIR.0000019907.77526.75 PubMedCrossRefGoogle Scholar
  6. 6.
    Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Støylen A, Ihlen H, Lima JA, Smiseth OA, Slørdahl SA (2006) Non-invasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47(4):789–793. doi: 10.1016/j.jacc.2005.10.040 PubMedCrossRefGoogle Scholar
  7. 7.
    Henry WL, Gardin JM, Ware JH (1980) Echocardiographic measurements in normal subjects from infancy to old age. Circulation 62(5):1054–1061. doi: 10.1161/01.CIR.62.5.1054 PubMedCrossRefGoogle Scholar
  8. 8.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, St John Sutton M, Stewart WJ (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7(2):79–108. doi: 10.1016/j.euje.2005.12.014 PubMedCrossRefGoogle Scholar
  9. 9.
    Quiñones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA (2002) Recommendations for quantification of Doppler echocardiography: a report from the Doppler quantification task force of the nomenclature and standards committee of the American society of echocardiography. J Am Soc Echocardiogr 15(2):167–184. doi: 10.1067/mje.2002.120202 PubMedCrossRefGoogle Scholar
  10. 10.
    Goebel B, Gjesdal O, Kottke D, Otto S, Jung C, Lauten A, Figulla HR, Edvardsen T, Poerner TC (2011) Detection of irregular patterns of myocardial contraction in patients with hypertensive heart disease: a two-dimensional ultrasound speckle tracking study. J Hypertens 29(11):2255–2264. doi: 10.1097/HJH.0b013e32834bdd09 PubMedCrossRefGoogle Scholar
  11. 11.
    Haugaa KH, Smedsrud MK, Steen T, Kongsgaard E, Loennechen JP, Skjaerpe T, Voigt JU, Willems R, Smith G, Smiseth OA, Amlie JP, Edvardsen T (2010) Mechanical dispersion assessed by myocardial strain in patients after myocardial infarction for risk prediction of ventricular arrhythmia. JACC Cardiovasc Imaging 3(3):247–256. doi: 10.1016/j.jcmg.2009.11.012 PubMedCrossRefGoogle Scholar
  12. 12.
    Merlo M, Pyxaras SA, Pinamonti B, Barbati G, Di Lenarda A, Sinagra G (2011) Prevalence and prognostic significance of left ventricular reverse remodeling in dilated cardiomyopathy receiving tailored medical treatment. J Am Coll Cardiol 57(13):1468–1476. doi: 10.1016/j.jacc.2010.11.030 PubMedCrossRefGoogle Scholar
  13. 13.
    Steimle AE, Warner Stevenson L, Fonarow GC, Hamilton MA, Moriguchi JD (1994) Prediction of improvement in recent onset cardiomyopathy after referral for heart transplantation. J Am Coll Cardiol 23(3):553–559. doi: 10.1016/0735-1097(94)90735-8 PubMedCrossRefGoogle Scholar
  14. 14.
    Prazak P, Pfisterer M, Osswald S, Buser P, Burkart F (1996) Differences of disease progression in congestive heart failure due to alcoholic as compared to idiopathic dilated cardiomyopathy. Eur Heart J 17(2):251–257PubMedCrossRefGoogle Scholar
  15. 15.
    Pinamonti B, Zecchin M, Di Lenarda A, Gregori D, Sinagra G, Camerini F (1997) Persistence of restrictive left ventricular filling pattern in dilated cardiomyopathy: an ominous prognostic sign. J Am Coll Cardiol 29(3):604–612. doi: 10.1016/S0735-1097(96)00539-6 PubMedCrossRefGoogle Scholar
  16. 16.
    Meta-analysis Research Group in Echocardiography (MeRGE) Heart Failure Collaborators (2008) Independence of restrictive filling pattern and LV ejection fraction with mortality in heart failure: an individual patient meta-analysis. Eur J Heart Fail 10(8):786–792. doi: 10.1016/j.ejheart.2008.06.005 CrossRefGoogle Scholar
  17. 17.
    Nakayama Y, Shimizu G, Hirota Y, Saito T, Kino M, Kitaura Y, Kawamura K (1987) Functional and histopathologic correlation in patients with dilated cardiomyopathy: an integrated evaluation by multivariate analysis. J Am Coll Cardiol 10(1):186–192. doi: 10.1016/S0735-1097(87)80178-X PubMedCrossRefGoogle Scholar
  18. 18.
    Schwarz F, Mall G, Zebe H, Blickle J, Derks H, Manthey J, Kübler W (1983) Quantitative morphologic findings of the myocardium in idiopathic dilated cardiomyopathy. Am J Cardiol 51(3):501–506. doi: 10.1016/S0002-9149(83)80088-5 PubMedCrossRefGoogle Scholar
  19. 19.
    Figulla HR, Rahlf G, Nieger M, Luig H, Kreuzer H (1985) Spontaneous hemodynamic improvement or stabilization and associated biopsy findings in patients with congestive cardiomyopathy. Circulation 71(6):1095–1104. doi: 10.1161/01.CIR.71.6.1095 PubMedCrossRefGoogle Scholar
  20. 20.
    Grogan M, Redfield MM, Bailey KR, Reeder GS, Gersh BJ, Edwards WD, Rodeheffer RJ (1995) Long-term outcome of patients with biopsy-proved myocarditis: comparison with idiopathic dilated cardiomyopathy. J Am Coll Cardiol 26(1):80–84. doi: 10.1016/0735-1097(95)00148-S PubMedCrossRefGoogle Scholar
  21. 21.
    Hombach V, Merkle N, Torzewski J, Kraus JM, Kunze M, Zimmermann O, Kestler HA, Wöhrle J (2009) Electrocardiographic and cardiac magnetic resonance imaging parameters as predictors of a worse outcome in patients with idiopathic dilated cardiomyopathy. Eur Heart J 30(16):2011–2018. doi: 10.1093/eurheartj/ehp293 PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Yokoyama I, Momomura S, Ohtake T, Yonekura K, Inoue Y, Kobayakawa N, Aoyagi T, Sugiura S, Nishikawa J, Sasaki Y, Omata M (1998) Role of positron emission tomography using fluorine-18 fluoro-2-deoxyglucose in predicting improvement in left ventricular function in patients with idiopathic dilated cardiomyopathy. Eur J Nucl Med 25(7):736–743. doi: 10.1007/s002590050277 PubMedCrossRefGoogle Scholar
  23. 23.
    Assomull RG, Prasad SK, Lyne J, Smith G, Burman ED, Khan M, Sheppard MN, Poole-Wilson PA, Pennell DJ (2008) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 51(25):2414–2421. doi: 10.1016/j.jacc.2008.03.018 CrossRefGoogle Scholar
  24. 24.
    Fatkin D, Graham RM (2002) Molecular mechanisms of inherited cardiomyopathies. Physiol Rev 82(4):945–980. doi: 10.1152/physrev.00012.2002 PubMedGoogle Scholar
  25. 25.
    Knaapen P, Götte MJ, Paulus WJ, Zwanenburg JJ, Dijkmans PA, Boellaard R, Marcus JT, Twisk JW, Visser CA, van Rossum AC, Lammertsma AA, Visser FC (2006) Does myocardial fibrosis hinder contractile function and perfusion in idiopathic dilated cardiomyopathy? PET and MR imaging study. Radiology 240(2):380–388. doi: 10.1148/radiol.2402051038 PubMedCrossRefGoogle Scholar
  26. 26.
    Parthenakis FI, Patrianakos AP, Haritakis CN, Zacharis EA, Nyktari EG, Vardas PE (2008) NT-proBNP response to dobutamine stress echocardiography predicts left ventricular contractile reserve in dilated cardiomyopathy. Eur J Heart Fail 10(5):475–481. doi: 10.1016/j.ejheart.2008.03.003 PubMedCrossRefGoogle Scholar
  27. 27.
    Rigo F, Gherardi S, Galderisi M, Pratali L, Cortigiani L, Sicari R, Picano E (2006) The prognostic impact of coronary flow-reserve assessed by Doppler echocardiography in non-ischaemic dilated cardiomyopathy. Eur Heart J 27(11):1319–1323. doi: 10.1093/eurheartj/ehi795 PubMedCrossRefGoogle Scholar
  28. 28.
    Kang SJ, Song JK, Song JM, Kang DH, Lee EY, Kim J, Nam GB, Choi KJ, Kim JJ, Kim YH (2006) Usefulness of ventricular longitudinal contractility assessed by Doppler tissue imaging in the prediction of reverse remodeling in patients with severe left ventricular systolic dysfunction. J Am Soc Echocardiogr 19(2):178–184. doi: 10.1016/j.echo.2005.08.009 PubMedCrossRefGoogle Scholar
  29. 29.
    Tigen K, Karaahmet T, Kirma C, Dundar C, Pala S, Isiklar I, Cevik C, Kilicgedik A, Basaran Y (2010) Diffuse late gadolinium enhancement by cardiovascular magnetic resonance predicts significant intraventricular systolic dyssynchrony in patients with non-ischemic dilated cardiomyopathy. J Am Soc Echocardiogr 23(4):416–422. doi: 10.1016/j.echo.2009.12.022 PubMedCrossRefGoogle Scholar
  30. 30.
    Leong DP, Chakrabarty A, Shipp N, Molaee P, Madsen PL, Joerg L, Sullivan T, Worthley SG, De Pasquale CG, Sanders P, Selvanayagam JB (2011) Effects of myocardial fibrosis and ventricular dyssynchrony on response to therapy in new-presentation idiopathic dilated cardiomyopathy: insights from cardiovascular magnetic resonance and echocardiography. Eur Heart J 33(5):640–648. doi: 10.1093/eurheartj/ehr391 PubMedCrossRefGoogle Scholar
  31. 31.
    Park HE, Chang SA, Kim HK, Shin DH, Kim JH, Seo MK, Kim YJ, Cho GY, Sohn DW, Oh BH, Park YB (2010) Impact of loading condition on the 2D speckle tracking-derived left ventricular dyssynchrony index in nonischemic dilated cardiomyopathy. Circ Cardiovasc Imaging 3(3):272–281. doi: 10.1161/CIRCIMAGING.109.890848 PubMedCrossRefGoogle Scholar
  32. 32.
    Jasaityte R, Dandel M, Lehmkuhl H, Hetzer R (2009) Prediction of short-term outcomes in patients with idiopathic dilated cardiomyopathy referred for transplantation using standard echocardiography and strain imaging. Transplant Proc 41(1):277–280. doi: 10.1016/j.transproceed.2008.10.083 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Björn Goebel
    • 1
    Email author
  • Kristina H. Haugaa
    • 2
    • 3
  • Kathleen Meyer
    • 1
  • Sylvia Otto
    • 1
  • Christian Jung
    • 1
  • Alexander Lauten
    • 1
  • Hans R. Figulla
    • 1
  • Thor Edvardsen
    • 2
    • 3
  • Tudor C. Poerner
    • 1
  1. 1.1st Department of Medicine, Division of CardiologyUniversity Hospital of JenaJenaGermany
  2. 2.Department of CardiologyRikshospitalet University HospitalOsloNorway
  3. 3.University of OsloOsloNorway

Personalised recommendations