SPECT gated blood pool phase analysis of lateral wall motion for prediction of CRT response

  • Michel Lalonde
  • David Birnie
  • Terrence D. Ruddy
  • Robert A. deKemp
  • Rob S. B. Beanlands
  • Richard Wassenaar
  • R. Glenn Wells
Original Paper


Amplitude, defined as the magnitude of contraction of the myocardium, is obtained from phase analysis but has not been investigated to the same extent as phase-based parameters for predicting the outcome of cardiac resynchronization therapy (CRT). The size of scar present in the lateral wall of the left ventricle (LV) has been shown in some studies to predict response to CRT. Scar is associated with impaired regional LV wall motion and is expected to result in a reduction in the corresponding amplitude values derived from phase analysis. Our objective was to determine the correlation between amplitude and scar, and to evaluate amplitude parameters as surrogates for scar in predicting response to CRT. 49 patients underwent a single photon emission computed tomography (SPECT) radionuclide angiography (RNA) scan as well as FDG viability and Rubidium-82 perfusion PET scans prior to undergoing CRT. Phase analysis was performed on the SPECT RNA data to extract amplitude values used to define amplitude size (AmpSize) and amplitude score (AmpScore) parameters. Scar size and scar score were obtained from the PET scans based on a 5 segment model. Scar parameters were then compared to amplitude parameters in the lateral wall for the whole population as well as both ischemic (N = 27) and non-ischemic (N = 22) populations using Pearson correlation. The ability of amplitude parameters to predict response to CRT was also investigated and compared to scar parameters. The largest ROC AUC values were obtained in the ischemic population where values of 0.67 and 0.68 were observed for lateral wall AmpSize and AmpScore respectively. Both parameters produced the same sensitivity and specificity values of 83 and 67 %. Amplitude size in the lateral wall showed significant correlation with lateral wall scar size in all patients (r = 0.51), which was further strengthened in the ischemic patient sub-group (r = 0.64). Lateral wall amplitude-based parameters obtained from SPECT RNA phase analysis produced an overall accuracy in predicting CRT response in ischemic patients that was not significantly different to that of PET lateral wall scar parameters. A significant correlation existed between amplitude size and scar size in the lateral wall.


Scar analysis Phase analysis Cardiac resynchronization therapy SPECT Heart failure 


  1. 1.
    Abraham WT, Fisher WG, Smith AL et al (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346:1845–1853PubMedCrossRefGoogle Scholar
  2. 2.
    McAlister FA, Ezekowitz J, Dryden DM et al (2007) Cardiac resynchronization therapy and implantable cardiac defibrillators in left ventricular systolic dysfunction. Evid Rep Technol Assess 152: 1–199Google Scholar
  3. 3.
    Cleland JGF, Calvert MJ, Verboven Y, Freemantle N (2009) Effects of cardiac resynchronization therapy on long-term quality of life: an analysis from the CArdiac Resynchronisation-Heart Failure (CARE-HF) study. Am Heart J 157:457–466PubMedCrossRefGoogle Scholar
  4. 4.
    Rivero-Ayerza M, Theuns DAMJ, Garcia-Garcia HM, Boersma E, Simoons M, Jordaens LJ (2006) Effects of cardiac resynchronization therapy on overall mortality and mode of death: a meta-analysis of randomized controlled trials. Eur Heart J 27:2682–2688PubMedCrossRefGoogle Scholar
  5. 5.
    Tang ASL, Wells GA, Talajic M et al (2010) Cardiac-resynchronization therapy for mild-to-moderate heart failure. N Engl J Med 363:2385–2395PubMedCrossRefGoogle Scholar
  6. 6.
    Birnie DH, Tang AS (2006) The problem of non-response to cardiac resynchronization therapy. Curr Opin Cardiol 21:20–26PubMedCrossRefGoogle Scholar
  7. 7.
    Chung ES, Leon AR, Tavazzi L et al (2008) Results of the predictors of response to CRT (PROSPECT) trial. Circulation 117:2608–2616PubMedCrossRefGoogle Scholar
  8. 8.
    Strickberger SA, Conti J, Daoud EG et al (2005) Patient selection for cardiac resynchronization therapy: from the council on clinical cardiology subcommittee on electrocardiography and arrhythmias and the quality of care and outcomes research interdisciplinary working group, in collaboration with the heart rhythm society. Circulation 111:2146–2150PubMedCrossRefGoogle Scholar
  9. 9.
    Botvinick EH, O’Connell JW, Badhwar N (2009) Editorial: imaging synchrony. J Nucl Cardiol 16:846–848PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Vardas PE, Auricchio A, Blanc J- et al (2007) Guidelines for cardiac pacing and cardiac resynchronization therapy: the task force for cardiac pacing and cardiac resynchronization therapy of the European society of cardiology. Developed in collaboration with the European heart rhythm association. Eur Heart J 28:2256–2295PubMedCrossRefGoogle Scholar
  11. 11.
    Padeletti L, Paoletti Perini A, Gronda E (2012) Cardiac resynchronization therapy: the issue of non-response. Heart Fail Rev 17:97–105PubMedCrossRefGoogle Scholar
  12. 12.
    Auricchio A, Regoli F (2011) Past, present, and future of CRT. Heart Fail Rev 16:205–214PubMedCrossRefGoogle Scholar
  13. 13.
    Taylor AJ, Elsik M, Broughton A et al (2010) Combined dyssynchrony and scar imaging with cardiac magnetic resonance imaging predicts clinical response and long-term prognosis following cardiac resynchronization therapy. Europace 12:708–713PubMedCrossRefGoogle Scholar
  14. 14.
    Chalil S, Foley PWX, Muyhaldeen SA et al (2007) Late gadolinium enhancement-cardiovascular magnetic resonance as a predictor of response to cardiac resynchronization therapy in patients with ischaemic cardiomyopathy. Europace 9:1031–1037PubMedCrossRefGoogle Scholar
  15. 15.
    Bilchick KC, Dimaano V, Wu KC et al (2008) Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy. JACC Cardiovasc Imaging 1:561–568PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    White JA, Yee R, Yuan X et al (2006) Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol 48:1953–1960PubMedCrossRefGoogle Scholar
  17. 17.
    Petryka J, Miśko J, Przybylski A et al (2012) Magnetic resonance imaging assessment of intraventricular dyssynchrony and delayed enhancement as predictors of response to cardiac resynchronization therapy in patients with heart failure of ischaemic and non-ischaemic etiologies. Eur J Radiol 81(10):2639–2647Google Scholar
  18. 18.
    Toussaint J, Lavergne T, Kerrou K et al (2003) Basal asynchrony and resynchronization with biventricular pacing predict long-term improvement of LV function in heart failure patients. Pacing Clin Electrophysiol 26:1815–1823PubMedCrossRefGoogle Scholar
  19. 19.
    Botvinick EH, Badhwar N, O’Connell JW (2008) Cardiac resynchronization therapy: the role of equilibrium radionuclide angiography. Medicamundi 52:51–58Google Scholar
  20. 20.
    Muramatsu T, Matsumoto K, Nishimura S (2005) Efficacy of the phase images in Fourier analysis using gated cardiac POOL-SPECT for determining the indication for cardiac resynchronization therapy. Circ J 69:1521–1526PubMedCrossRefGoogle Scholar
  21. 21.
    Henneman MM, Chen J, Dibbets-Schneider P et al (2007) Can LV dyssynchrony as assessed with phase analysis on gated myocardial perfusion SPECT predict response to CRT? J Nucl Med 48:1104–1111PubMedCrossRefGoogle Scholar
  22. 22.
    Van Kriekinge SD, Nishina H, Ohba M, Berman DS, Germano G (2008) Automatic global and regional phase analysis from gated myocardial perfusion SPECT imaging: application to the characterization of ventricular contraction in patients with left bundle branch block. J Nucl Med 49:1790–1797PubMedCrossRefGoogle Scholar
  23. 23.
    Boogers MM, Van Kriekinge SD, Henneman MM et al (2009) Quantitative gated SPECT-derived phase analysis on gated myocardial perfusion SPECT detects left ventricular dyssynchrony and predicts response to cardiac resynchronization therapy. J Nucl Med 50:718–725PubMedCrossRefGoogle Scholar
  24. 24.
    Birnie D, deKemp RA, Ruddy TD et al (2009) Effect of lateral wall scar on reverse remodeling with cardiac resynchronization therapy. Heart Rhythm 6:1721–1726PubMedCrossRefGoogle Scholar
  25. 25.
    Adelstein EC, Tanaka H, Soman P et al (2011) Impact of scar burden by single-photon emission computed tomography myocardial perfusion imaging on patient outcomes following cardiac resynchronization therapy. Eur Heart J 32:93–103PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Chalil S, Stegemann B, Muhyaldeen SA et al (2007) Effect of posterolateral left ventricular scar on mortality and morbidity following cardiac resynchronization therapy. Pacing Clin Electrophysiol 30:1201–1209PubMedCrossRefGoogle Scholar
  27. 27.
    Marsan NA, Westenberg JJM, Ypenburg C et al (2009) Magnetic resonance imaging and response to cardiac resynchronization therapy: relative merits of left ventricular dyssynchrony and scar tissue. Eur Heart J 30:2360–2367PubMedCrossRefGoogle Scholar
  28. 28.
    Mele D, Agricola E, Galderisi M et al (2009) Echocardiographic myocardial scar burden predicts response to cardiac resynchronization therapy in ischemic heart failure. J Am Soc Echocardiogr 22:702–708PubMedCrossRefGoogle Scholar
  29. 29.
    Ypenburg C, Schalij MJ, Bleeker GB et al (2007) Impact of viability and scar tissue on response to cardiac resynchronization therapy in ischaemic heart failure patients. Eur Heart J 28:33–41PubMedCrossRefGoogle Scholar
  30. 30.
    Bleeker GB, Kaandorp TAM, Lamb HJ et al (2006) Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation 113:969–976PubMedCrossRefGoogle Scholar
  31. 31.
    Chen J, Garcia EV, Bax JJ, Iskandrian AE, Borges-Neto S, Soman P (2011) SPECT myocardial perfusion imaging for the assessment of left ventricular mechanical dyssynchrony. J Nucl Cardiol 18:685–694PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Birnie D, de Kemp RA, Tang AS et al (2011) Reduced septal glucose metabolism predicts response to cardiac resynchronization therapy. J Nucl Cardiol 19(1):1–11Google Scholar
  33. 33.
    Beanlands RSB, Nichol G, Huszti E et al (2007) F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease. A randomized, controlled trial (PARR-2). J Am Coll Cardiol 50:2002–2012PubMedCrossRefGoogle Scholar
  34. 34.
    Beanlands RSB, Ruddy TD, DeKemp RA et al (2002) Positron emission tomography and recovery following revascularization (PARR-1): the importance of scar and the development of a prediction rule for the degree of recovery of left ventricular function. J Am Coll Cardiol 40:1735–1743PubMedCrossRefGoogle Scholar
  35. 35.
    Vitale GD, Dekemp RA, Ruddy TD, Williams K, Beanlands RSB (2001) Myocardial glucose utilization and optimization of 18F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med 42:1730–1736PubMedGoogle Scholar
  36. 36.
    Anselm DD, Anselm AH, Renaud J et al (2011) Altered myocardial glucose utilization and the reverse mismatch pattern on rubidium-82 perfusion/F-18-FDG PET during the sub-acute phase following reperfusion of acute anterior myocardial infarction. J Nucl Cardiol 18:657–667PubMedCrossRefGoogle Scholar
  37. 37.
    Schelbert HR, Beanlands R, Bengel F et al (2003) PET myocardial perfusion and glucose metabolism imaging: part 2—guidelines for interpretation and reporting. J Nucl Cardiol 10:557–571PubMedCrossRefGoogle Scholar
  38. 38.
    Masc RK, Renaud JM, Ziadi MC et al (2010) Intra-and inter-operator repeatability of myocardial blood flow and myocardial flow reserve measurements using rubidium-82 pet and a highly automated analysis program. J Nucl Cardiol 17:600–616CrossRefGoogle Scholar
  39. 39.
    Klein R, Lortie M, Adler A, Beanlands R, deKemp R (2006) Fully automated software for polar-map registration and sampling from PET images. IEEE Nucl Sci Symp Conf Rec 6:3185Google Scholar
  40. 40.
    Callahan RJ, Froelich JW, McKusick KA (1982) A modified method for the in vivo labeling of red blood cells with Tc-99 m: concise communication. J Nucl Med 23:315–318PubMedGoogle Scholar
  41. 41.
    Lalonde M, Birnie D, Ruddy TD, deKemp RA, Wassenaar RW (2010) SPECT blood pool phase analysis can accurately and reproducibly quantify mechanical dyssynchrony. J Nucl Cardiol 17:803–810PubMedCrossRefGoogle Scholar
  42. 42.
    Massardo T, Gal RA, Grenier RP, Schmidt DH, Port SC (1990) Left ventricular volume calculation using a count-based ratio method applied to multigated radionuclide angiography. J Nucl Med 31:450–456PubMedGoogle Scholar
  43. 43.
    Yu C-, Bleeker GB, Fung JW- et al (2005) Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation 112:1580–1586PubMedCrossRefGoogle Scholar
  44. 44.
    Grizzard JD, Judd RM, Kim RJ (2008) Ischemic heart disease and non-ischemic cardiomyopathies. Springer, London, pp 25–40Google Scholar
  45. 45.
    Gottlieb I, Macedo R, Bluemke DA, Lima JAC (2006) Magnetic resonance imaging in the evaluation of non-ischemic cardiomyopathies: current applications and future perspectives. Heart Fail Rev 11:313–323PubMedCrossRefGoogle Scholar
  46. 46.
    Assomull RG, Prasad SK, Lyne J et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  • Michel Lalonde
    • 1
  • David Birnie
    • 2
  • Terrence D. Ruddy
    • 2
  • Robert A. deKemp
    • 2
  • Rob S. B. Beanlands
    • 2
  • Richard Wassenaar
    • 1
  • R. Glenn Wells
    • 2
  1. 1.Department of PhysicsCarleton UniversityOttawaCanada
  2. 2.Division of CardiologyUniversity of Ottawa Heart InstituteOttawaCanada

Personalised recommendations