Single-beat real-time three-dimensional echocardiographic automated contour detection for quantification of left ventricular volumes and systolic function

  • Ben Ren
  • Wim B. Vletter
  • Jackie McGhie
  • Osama I. I. Soliman
  • Marcel L. Geleijnse
Original Paper


To assess the feasibility and accuracy in measuring left ventricular (LV) end-diastolic volume (EDV), end-systolic volume (ESV) and ejection fraction (EF) with Siemens single-beat real-time 3D transthoracic echocardiography. The LV volumes and EF were measured in 3D datasets acquired by six imaging modes (time-1-harmonic (T1H), time-1-fundamental, time-2-harmonic, time-2-fundamental, space-1-harmonic (S1H), and space-1-fundamental) in 41 patients using the automated contouring algorithm and compared with manually corrected 3DE QLAB measurements. The main determinates of the temporal and spatial resolutions of 3D datasets acquired were the fundamental and harmonic modes. Consequently, the S1H mode had the lowest volume rate and highest spatial resolution. Compared with the 3DE QLAB analysis, the S1H mode resulted in the best LV volumes and EF estimates in all patients (0 ± 10 % for EF, −7 ± 44 ml for EDV, −7 ± 39 ml for ESV) and in the 10 patients with correct LV contour tracking according to a visual assessment from the multiplanar reconstruction views in all six modes (0 ± 9 % for EF, −3 ± 23 ml for EDV, −2 ± 14 ml for ESV). The T1H mode was the best alternative. Overall 28 patients (68 %) could be analysed automatically and satisfyingly with the S1H and T1H modes: 0 ± 8 % (EF), 0 ± 27 ml (EDV) and −1 ± 16 ml (ESV). The accuracy of the Siemens automated RT-3D algorithm in measuring LV volumes and EF is significantly influenced by the different imaging modes. The S1H mode may be the preferred 3D acquisition mode, supplemented by the T1H mode in enlarged LVs that do not fit in the S1H acquisition sector.


Left ventricle Three-dimensional Echocardiography 


Conflict of interest



  1. 1.
    Wang TJ, Evans JC, Benjamin EJ, Levy D, LeRoy EC, Vasan RS (2003) Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation 108(8):977–982. doi: 10.1161/01.CIR.0000085166.44904.7901.CIR.0000085166.44904.79 PubMedCrossRefGoogle Scholar
  2. 2.
    White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ (1987) Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76(1):44–51PubMedCrossRefGoogle Scholar
  3. 3.
    Jenkins C, Bricknell K, Hanekom L, Marwick TH (2004) Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol 44(4):878–886. doi: 10.1016/j.jacc.2004.05.050S0735-1097(04)01117-9 PubMedCrossRefGoogle Scholar
  4. 4.
    Kuhl HP, Schreckenberg M, Rulands D, Katoh M, Schafer W, Schummers G, Bucker A, Hanrath P, Franke A (2004) High-resolution transthoracic real-time three-dimensional echocardiography: quantitation of cardiac volumes and function using semi-automatic border detection and comparison with cardiac magnetic resonance imaging. J Am Coll Cardiol 43(11):2083–2090. doi: 10.1016/j.jacc.2004.01.037S073510970400484X PubMedCrossRefGoogle Scholar
  5. 5.
    Soliman OI, Krenning BJ, Geleijnse ML, Nemes A, Bosch JG, van Geuns RJ, Kirschbaum SW, Anwar AM, Galema TW, Vletter WB, ten Cate FJ (2007) Quantification of left ventricular volumes and function in patients with cardiomyopathies by real-time three-dimensional echocardiography: a head-to-head comparison between two different semiautomated endocardial border detection algorithms. J Am Soc Echocardiogr 20(9):1042–1049. doi: 10.1016/j.echo.2007.02.011 PubMedCrossRefGoogle Scholar
  6. 6.
    Soliman OI, Krenning BJ, Geleijnse ML, Nemes A, van Geuns RJ, Baks T, Anwar AM, Galema TW, Vletter WB, ten Cate FJ (2007) A comparison between QLAB and TomTec full volume reconstruction for real time three-dimensional echocardiographic quantification of left ventricular volumes. Echocardiography 24(9):967–974. doi: 10.1111/j.1540-8175.2007.00502.x PubMedCrossRefGoogle Scholar
  7. 7.
    Mor-Avi V, Jenkins C, Kuhl HP, Nesser HJ, Marwick T, Franke A, Ebner C, Freed BH, Steringer-Mascherbauer R, Pollard H, Weinert L, Niel J, Sugeng L, Lang RM (2008) Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC Cardiovasc Imaging 1(4):413–423. doi: 10.1016/j.jcmg.2008.02.009 PubMedCrossRefGoogle Scholar
  8. 8.
    Soliman OI, Kirschbaum SW, van Dalen BM, van der Zwaan HB, Mahdavian Delavary B, Vletter WB, van Geuns RJ, Ten Cate FJ, Geleijnse ML (2008) Accuracy and reproducibility of quantitation of left ventricular function by real-time three-dimensional echocardiography versus cardiac magnetic resonance. Am J Cardiol 102(6):778–783. doi: 10.1016/j.amjcard.2008.04.062 PubMedCrossRefGoogle Scholar
  9. 9.
    Dorosz JL, Lezotte DC, Weitzenkamp DA, Allen LA, Salcedo EE (2012) Performance of 3-dimensional echocardiography in measuring left ventricular volumes and ejection fraction: a systematic review and meta-analysis. J Am Coll Cardiol 59(20):1799–1808. doi: 10.1016/j.jacc.2012.01.037 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Muraru D, Badano LP, Piccoli G, Gianfagna P, Del Mestre L, Ermacora D, Proclemer A (2010) Validation of a novel automated border-detection algorithm for rapid and accurate quantitation of left ventricular volumes based on three-dimensional echocardiography. Eur J Echocardiogr 11(4):359–368. doi: 10.1093/ejechocard/jep217 PubMedCrossRefGoogle Scholar
  11. 11.
    Chang SA, Lee SC, Kim EY, Hahm SH, Jang SY, Park SJ, Choi JO, Park SW, Choe YH, Oh JK (2011) Feasibility of single-beat full-volume capture real-time three-dimensional echocardiography and auto-contouring algorithm for quantification of left ventricular volume: validation with cardiac magnetic resonance imaging. J Am Soc Echocardiogr 24(8):853–859. doi: 10.1016/j.echo.2011.04.015 PubMedCrossRefGoogle Scholar
  12. 12.
    Thavendiranathan P, Liu S, Verhaert D, Calleja A, Nitinunu A, Van Houten T, De Michelis N, Simonetti O, Rajagopalan S, Ryan T, Vannan MA (2012) Feasibility, accuracy, and reproducibility of real-time full-volume 3D transthoracic echocardiography to measure LV volumes and systolic function: a fully automated endocardial contouring algorithm in sinus rhythm and atrial fibrillation. JACC Cardiovasc Imaging 5(3):239–251. doi: 10.1016/j.jcmg.2011.12.012 PubMedCrossRefGoogle Scholar
  13. 13.
    Krenning BJ, Kirschbaum SW, Soliman OI, Nemes A, van Geuns RJ, Vletter WB, Veltman CE, Ten Cate FJ, Roelandt JR, Geleijnse ML (2007) Comparison of contrast agent-enhanced versus non-contrast agent-enhanced real-time three-dimensional echocardiography for analysis of left ventricular systolic function. Am J Cardiol 100(9):1485–1489. doi: 10.1016/j.amjcard.2007.06.042 PubMedCrossRefGoogle Scholar
  14. 14.
    Malm S, Frigstad S, Sagberg E, Larsson H, Skjaerpe T (2004) Accurate and reproducible measurement of left ventricular volume and ejection fraction by contrast echocardiography: a comparison with magnetic resonance imaging. J Am Coll Cardiol 44(5):1030–1035. doi: 10.1016/j.jacc.2004.05.068S0735-1097(04)01217-3 PubMedCrossRefGoogle Scholar
  15. 15.
    Thomson HL, Basmadjian AJ, Rainbird AJ, Razavi M, Avierinos JF, Pellikka PA, Bailey KR, Breen JF, Enriquez-Sarano M (2001) Contrast echocardiography improves the accuracy and reproducibility of left ventricular remodelling measurements: a prospective, randomly assigned, blinded study. J Am Coll Cardiol 38(3):867–875PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ben Ren
    • 1
  • Wim B. Vletter
    • 1
  • Jackie McGhie
    • 1
  • Osama I. I. Soliman
    • 1
  • Marcel L. Geleijnse
    • 1
  1. 1.Department of Cardiology, ThoraxcenterErasmus University Medical CenterRotterdamThe Netherlands

Personalised recommendations