Improved evaluation of calcified segments on coronary CT angiography: a feasibility study of coronary calcium subtraction

  • Ryoichi Tanaka
  • Kunihiro Yoshioka
  • Kenta Muranaka
  • Takuya Chiba
  • Takanori Ueda
  • Tadashi Sasaki
  • Tetsuya Fusazaki
  • Shigeru Ehara
Original Paper


We explore the feasibility of coronary calcium subtraction computed tomography angiography (CCTA) in patients with high calcium scores using invasive coronary angiography as the gold standard. Eleven patients with calcium scores of >400 underwent CCTA using a subtraction protocol followed by invasive coronary angiography. In addition to standard reconstructions, subtracted images were obtained using a dedicated subtraction algorithm. A total of 55 calcified segments were evaluated for image quality [using a 4-point scale ranging from 1 (uninterpretable) to 4 (good)] and the presence of significant (≥50 %) luminal stenosis. Conventional and subtracted CCTA were compared using quantitative coronary angiography (QCA) as the gold standard. The average image quality of conventional CCTA was 2.5 ± 0.6 versus 3.1 ± 0.6 on subtraction CCTA (P < 0.001). The percentage of segments with a score 1 or 2 was reduced from 41.8 to 12.7 % after coronary calcium subtraction (P = 0.002). On QCA, significant stenosis was observed in 16 segments. The area under the receiver operating characteristics curve to detect ≥50 % stenosis on QCA increased from 0.741 [95 % confidence interval (CI) 0.598–0.885] for conventional CCTA to 0.905 (95 % CI 0.791–1.000) for subtraction CCTA (P = 0.003). In patients with extensive calcifications undergoing CCTA, coronary calcium subtraction may improve the evaluation of calcified segments.


Cardiac computed tomography Coronary angiography Coronary calcifications Subtraction Coronary artery disease 



Coronary computed tomography angiography


Curved multiplanar reconstructions


Quantitative coronary angiography


Adaptive iterative dose reduction 3D


Body weight


Area under the curve


Receiver operating characteristic


Dose-length product



Mr. Kazumasa Arakita and Dr. Joanne Schuijf from Toshiba Medical Systems gave support and suggestions in writing and technical subjects, especially for the dedicated subtraction algorithms.

Conflict of interest



  1. 1.
    Paech DC, Weston AR (2011) A systematic review of the clinical effectiveness of 64-slice or higher computed tomography angiography as an alternative to invasive coronary angiography in the investigation of suspected coronary artery disease. BMC Cardiovasc Disord 11:32. doi: 10.1186/1471-2261-11-32 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, Paul N, Clouse ME, Shapiro EP, Hoe J, Lardo AC, Bush DE, de Roos A, Cox C, Brinker J, Lima JA (2008) Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med 359(22):2324–2336. doi: 10.1056/NEJMoa0806576 PubMedCrossRefGoogle Scholar
  3. 3.
    Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, Scherer M, Bellinger R, Martin A, Benton R, Delago A, Min JK (2008) Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (Assessment by Coronary Computed Tomographic Angiography of Individuals Undergoing Invasive Coronary Angiography) trial. J Am Coll Cardiol 52(21):1724–1732. doi: 10.1016/j.jacc.2008.07.031 PubMedCrossRefGoogle Scholar
  4. 4.
    Vavere AL, Arbab-Zadeh A, Rochitte CE, Dewey M, Niinuma H, Gottlieb I, Clouse ME, Bush DE, Hoe JW, de Roos A, Cox C, Lima JA, Miller JM (2011) Coronary artery stenoses: accuracy of 64-detector row CT angiography in segments with mild, moderate, or severe calcification–a subanalysis of the CORE-64 trial. Radiology 261(1):100–108. doi: 10.1148/radiol.11110537 PubMedCrossRefGoogle Scholar
  5. 5.
    Abdulla J, Pedersen KS, Budoff M, Kofoed KF (2012) Influence of coronary calcification on the diagnostic accuracy of 64-slice computed tomography coronary angiography: a systematic review and meta-analysis. Int J Cardiovasc Imaging 28(4):943–953. doi: 10.1007/s10554-011-9902-6 PubMedCrossRefGoogle Scholar
  6. 6.
    Mark DB, Berman DS, Budoff MJ, Carr JJ, Gerber TC, Hecht HS, Hlatky MA, Hodgson JM, Lauer MS, Miller JM, Morin RL, Mukherjee D, Poon M, Rubin GD, Schwartz RS (2010) ACCF/ACR/AHA/NASCI/SAIP/SCAI/SCCT 2010 expert consensus document on coronary computed tomographic angiography: a report of the American College of Cardiology Foundation Task Force on Expert Consensus Documents. Circulation 121(22):2509–2543. doi: 10.1161/CIR.0b013e3181d4b618 PubMedCrossRefGoogle Scholar
  7. 7.
    Yoshioka K, Tanaka R, Muranaka K (2012) Subtraction coronary CT angiography for calcified lesions. Cardiol Clin 30(1):93–102. doi: 10.1016/j.ccl.2011.10.004 PubMedCrossRefGoogle Scholar
  8. 8.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R (1990) Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 15(4):827–832. doi: 10.1016/0735-1097(90)90282-T Google Scholar
  9. 9.
    Razeto M, Matthews J, Masood S, Steel J, Arakita K (2013) Accurate registration of coronary arteries for volumetric CT digital subtraction angiography. roc SPIE 8768, International Conference on Graphic and Image Processing (ICGIP 2012), 876834:876834–876836Google Scholar
  10. 10.
    Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, Nieman K, van Werkhoven JM, Pundziute G, Weustink AC, de Vos AM, Pugliese F, Rensing B, Jukema JW, Bax JJ, Prokop M, Doevendans PA, Hunink MG, Krestin GP, de Feyter PJ (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52(25):2135–2144. doi: 10.1016/j.jacc.2008.08.058 PubMedCrossRefGoogle Scholar
  11. 11.
    Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, Muller M (2011) pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics 12:77. doi: 10.1186/1471-2105-12-77 PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    McCollough CH, Primak AN, Braun N, Kofler J, Yu L, Christner J (2009) Strategies for reducing radiation dose in CT. Radiol Clin N Am 47(1):27–40. doi: 10.1016/j.rcl.2008.10.006 PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Watanabe Y, Kashiwagi N, Yamada N, Higashi M, Fukuda T, Morikawa S, Onishi Y, Iihara K, Miyamoto S, Naito H (2008) Subtraction 3D CT angiography with the orbital synchronized helical scan technique for the evaluation of postoperative cerebral aneurysms treated with cobalt-alloy clips. AJNR Am J Neuroradiol 29(6):1071–1075. doi: 10.3174/ajnr.A1040 PubMedCrossRefGoogle Scholar
  14. 14.
    Ebersberger U, Tricarico F, Schoepf UJ, Blanke P, Spears JR, Rowe GW, Halligan WT, Henzler T, Bamberg F, Leber AW, Hoffmann E, Apfaltrer P (2013) CT evaluation of coronary artery stents with iterative image reconstruction: improvements in image quality and potential for radiation dose reduction. Eur Radiol 23(1):125–132. doi: 10.1007/s00330-012-2580-5 PubMedCrossRefGoogle Scholar
  15. 15.
    Wang R, Schoepf UJ, Wu R, Reddy RP, Zhang C, Yu W, Liu Y, Zhang Z (2012) Image quality and radiation dose of low dose coronary CT angiography in obese patients: sinogram affirmed iterative reconstruction versus filtered back projection. Eur J Radiol 81(11):3141–3145. doi: 10.1016/j.ejrad.2012.04.012 PubMedCrossRefGoogle Scholar
  16. 16.
    Oda S, Utsunomiya D, Funama Y, Yonenaga K, Namimoto T, Nakaura T, Yamashita Y (2012) A hybrid iterative reconstruction algorithm that improves the image quality of low-tube-voltage coronary CT angiography. AJR Am J Roentgenol 198(5):1126–1131. doi: 10.2214/AJR.11.7117 PubMedCrossRefGoogle Scholar
  17. 17.
    Renker M, Ramachandra A, Schoepf UJ, Raupach R, Apfaltrer P, Rowe GW, Vogt S, Flohr TG, Kerl JM, Bauer RW, Fink C, Henzler T (2011) Iterative image reconstruction techniques: applications for cardiac CT. J Cardiovasc Comput Tomogr 5(4):225–230. doi: 10.1016/j.jcct.2011.05.002 PubMedCrossRefGoogle Scholar
  18. 18.
    Dewey M, Hoffmann H, Hamm B (2007) CT coronary angiography using 16 and 64 simultaneous detector rows: intraindividual comparison. Rofo 179(6):581–586. doi: 10.1055/s-2007-963112 PubMedCrossRefGoogle Scholar
  19. 19.
    Geleijns J, Joemai RM, Dewey M, de Roos A, Zankl M, Cantera AC, Artells MS (2011) Radiation exposure to patients in a multicenter coronary angiography trial (CORE 64). AJR Am J Roentgenol 196(5):1126–1132. doi: 10.2214/AJR.09.3983 PubMedCrossRefGoogle Scholar
  20. 20.
    Zhang T, Luo Z, Wang D, Han D, Bai J, Meng X, Shen B (2011) Radiation dose in coronary artery angiography with 320-detector row CT and its diagnostic accuracy: comparison with 64-detector row CT. Minerva Med 102(4):249–259. Accessed 22 Oct 2013
  21. 21.
    Xie Z, Wang J, Ding G, Song W, Xu K, Ren K (2013) Radiation dose study of 64-slice spiral CT coronary angiography: a paired design. Radiat Prot Dosimetry 155(1):115–118. doi: 10.1093/rpd/ncs277 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Ryoichi Tanaka
    • 1
  • Kunihiro Yoshioka
    • 1
  • Kenta Muranaka
    • 1
  • Takuya Chiba
    • 1
  • Takanori Ueda
    • 1
  • Tadashi Sasaki
    • 1
  • Tetsuya Fusazaki
    • 2
  • Shigeru Ehara
    • 1
  1. 1.Department of RadiologyIwate Medical UniversityMoriokaJapan
  2. 2.Department of Cardiovascular MedicineIwate Medical UniversityMoriokaJapan

Personalised recommendations