The International Journal of Cardiovascular Imaging

, Volume 29, Issue 8, pp 1787–1798 | Cite as

The emerging role of cardiovascular magnetic resonance in the evaluation of Kawasaki disease

  • Sophie Mavrogeni
  • George Papadopoulos
  • Tarique Hussain
  • Amedeo Chiribiri
  • Rene Botnar
  • Gerald F. Greil
Article

Abstract

Kawasaki disease (KD) is a vasculitis affecting the coronary and systemic arteries. Myocardial inflammation is also a common finding in KD post-mortem evaluation during the acute phase of the disease. Coronary artery aneurysms (CAAs) develop in 15–25 % of untreated children. Although 50–70 % of CAAs resolve spontaneously 1–2 years after the onset of KD, the remaining unresolved CAAs can develop stenotic lesions at either their proximal or distal end and can develop thrombus formation leading to ischemia and/or infarction. Cardiovascular magnetic resonance (CMR) has the ability to perform non-invasive and radiation-free evaluation of the coronary artery lumen. Recently tissue characterization of the coronary vessel wall was provided by CMR. It can also image myocardial inflammation, ischemia and fibrosis. Therefore CMR offers important clinical information during the acute and chronic phase of KD. In the acute phase, it can identify myocardial inflammation, microvascular disease, myocardial infarction, deterioration of left ventricular function, changes of the coronary artery lumen and changes of the coronary artery vessel wall. During the chronic phase, CMR imaging might be of value for risk stratification and to guide treatment.

Keywords

Cardiovascular magnetic resonance Kawasaki disease Myocarditis Myocardial perfusion Coronary aneurysm Myocardial infarction 

Notes

Acknowledgments

The Division of Imaging Sciences receives support from the Centre of Excellence in Medical Engineering (funded by the Wellcome Trust and the Engineering and Physical Sciences Research Council; grant WT 088641/Z/09/Z) as well as the British Heart Foundation Centre of Excellence (British Heart Foundation award RE/08/03). Further support is provided through the Medical Research Council (MRC) Centre for Transplantation, King’s College London, UK (MRC grant no. MR/J006742/1). This research was also supported by the National Institute for Health Research (NIHR) Biomedical Research Centre at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR or the Department of Health. The authors thank James Otton, St Vincent’s Hospital Sydney, Australia, for his comments regarding the use of Computed Tomography for coronary imaging.

Conflict of interest

There is no conflict of Interest for any of authors of the review.

References

  1. 1.
    Taubert KA, Rowley AH, Shulman ST (1994) Seven-year national survey of Kawasaki disease and acute rheumatic fever. Pediatr Infect Dis J 13:704–708PubMedCrossRefGoogle Scholar
  2. 2.
    Newburger JW, Takahashi M, Gerber MA, Gewitz MH, Tani LY, Burns JC, Shulman ST, Bolger AF, Ferrieri P, Baltimore RS, Wilson WR, Baddour LM, Levison ME, Pallasch TJ, Falace DA, Taubert KA (2004) A statement for health professionals from the Committee on Rheumatic Fever, Endocarditis, and Kawasaki disease, Council on Cardiovascular Disease in the Young, American Heart Association. Pediatrics 114:1708–1733PubMedCrossRefGoogle Scholar
  3. 3.
    Naoe S, Takahashi K, Masuda H, Tanaka N (1991) Kawasaki disease: with particular emphasis on arterial lesions. Acta Pathol Jpn 41:785–797PubMedGoogle Scholar
  4. 4.
    Yoshikawa H, NomuraY Y, Masuda K, Hazeki D, Yotsumoto K, Arata M, Kamenosono A, Yanagi S, Yoshinaga M, Kawano Y (2006) Four cases of Kawasaki syndrome complicated with myocarditis. Circ J 70:202–205PubMedCrossRefGoogle Scholar
  5. 5.
    Shinohara T, Yokoyama T (1999) Clinical study of cardiac pump failure in acute phase of Kawasaki disease. J Pediatr Pract 62:2101–2104Google Scholar
  6. 6.
    Mavrogeni S, Bratis K, Karanasios E, Georgakopoulos D, Kaklis S, Varlamis G, Kolovou G, Douskou M, Papadopoulos G (2011) Cardiovascular magnetic resonance evaluation of cardiac involvement during the convalescence phase of Kawasaki disease. JACC Cardiovasc Imag 4(10):1140–1141CrossRefGoogle Scholar
  7. 7.
    Porcalla AR, Sable CA, Patel KM, Martin GR, Singh N (2005) The epidemiology of Kawasaki disease in an urban hospital: does African American race protect against coronary artery aneurysms? Pediatr Cardiol 26:775–781PubMedCrossRefGoogle Scholar
  8. 8.
    Akagi T, Rose V, Benson LN, Newman A, Freedom RM (1992) Outcome of coronary artery aneurysms after Kawasaki disease. J Pediatr 121:689–694PubMedCrossRefGoogle Scholar
  9. 9.
    Kato H, Inoue O, Kawasaki T, Fujiwara H, Watanabe T, Toshima H (1992) Adult coronary artery disease probably due to childhood Kawasaki disease. Lancet 340:1127–1129PubMedCrossRefGoogle Scholar
  10. 10.
    Burns JC, Gordon JB, Malhora A, Schoenwetter M, Kawasaki T (1996) Sequelae of Kawasaki disease in adolescents and young adults. J Am Coll Cardiol 28:253–257PubMedCrossRefGoogle Scholar
  11. 11.
    Capannari TE, Daniels SR, Meyer RA, Schwartz DC, Kaplan S (1986) Sensitivity, specificity and predictive value of two-dimensional echocardiography in detecting coronary artery aneurysms in patients with Kawasaki disease. J Am Coll Cardiol 7:355–360PubMedCrossRefGoogle Scholar
  12. 12.
    Hiraishi S, Misawa H, Takeda N, Horiguchi Y, Fujino N, Ogawa N, Hirota H (2000) Transthoracic ultrasonic visualisation of coronary aneurysm, stenosis, and occlusion in Kawasaki disease. Heart 83:400–405PubMedCrossRefGoogle Scholar
  13. 13.
    Albro PC, Gould KL, Westcott RJ, Hamilton GW, Ritchie JL, Williams DL (1978) Noninvasive assessment of coronary stenoses by myocardial imaging during pharmacologic coronary vasodilatation. III. Clinical trial. Am J Cardiol 42:751–760PubMedCrossRefGoogle Scholar
  14. 14.
    Mason JR, Palac RT, Freeman ML, Virupannavar S, Loeb HS, Kaplan E, Gunnar RM (1984) Thallium scintigraphy during dobutamine infusion: nonexercise-dependent screening test for coronary disease. Am Heart J 107:481–485PubMedCrossRefGoogle Scholar
  15. 15.
    Kondo C, Hiroe M, Nakanishi T, Takao A (1989) Detection of coronary artery stenosis in children with Kawasaki disease. Usefulness of pharmacologic stress 201TI myocardial tomography. Circulation 80:615–624PubMedCrossRefGoogle Scholar
  16. 16.
    Bergersen L, Gauvreau K, Marshall A, Kreutzer J, Beekman R, Hirsch R, Foerster S, Balzer D, Vincent J, Hellenbrand W, Holzer R, Cheatham J, Moore J, Lock J, Jenkins K (2011) Procedure-type risk categories for pediatric and congenital cardiac catheterization. Circ Cardiovasc Interv 4:188–194PubMedCrossRefGoogle Scholar
  17. 17.
    Mavrogeni S, Papadopoulos G, Douskou M, Kaklis S, Seimenis I, Baras P, Nikolaidou P, Bakoula C, Karanasios E, Manginas A, Cokkinos DV (2004) Magnetic resonance angiography is equivalent to x-ray coronary angiography for the evaluation of the coronary arteries in Kawasaki disease. J Am Coll Cardiol 43:649–652PubMedCrossRefGoogle Scholar
  18. 18.
    Greil GF, Stuber M, Botnar RM, Kissinger KV, Geva T, Newburger JW, Manning WJ, Powell AJ (2002) Coronary magnetic resonance angiography in adolescents and young adults with Kawasaki disease. Circulation 105(8):908–911PubMedCrossRefGoogle Scholar
  19. 19.
    Kim WY, Danias PG, Stuber M, Flamm SD, Plein S, Nagel E, Langerak SE, Weber OM, Pedersen EM, Schmidt M, Botnar RM, Manning WJ (2001) Coronary magnetic resonance angiography for the detection of coronary stenoses. N Engl J Med 345:1863–1869PubMedCrossRefGoogle Scholar
  20. 20.
    Post JC, van Rossum AC, Bronzwaer JG, de Cock CC, Hofman MB, Valk J, Visser CA (1995) Magnetic resonance angiography of anomalous coronary arteries. A new gold standard for delineating the proximal course? Circulation 92:3163–3171PubMedCrossRefGoogle Scholar
  21. 21.
    Lee DC, Simonetti OP, Harris KR, Holly TA, Judd RM, Wu E, Klocke FJ (2004) Magnetic resonance versus radionuclide pharmacological stress perfusion imaging for flow-limiting stenoses of varying severity. Circulation 110:58–65PubMedCrossRefGoogle Scholar
  22. 22.
    Wagner A, Mahrholdt H, Holly TA, Elliott MD, Regenfus M, Parker M, Klocke FJ, Bonow RO, Kim RJ, Judd RM (2003) Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 361:374–379PubMedCrossRefGoogle Scholar
  23. 23.
    Greenwood JP, Maredia N, Younger JF, Brown JM, Nixon J, Everett CC, Bijsterveld P, Ridgway JP, Radjenovic A, Dickinson CJ, Ball SG, Plein S (2012) Cardiovascular magnetic resonance and single-photon emission computed tomography for diagnosis of coronary heart disease (CE-MARC): a prospective trial. Lancet 379(9814):453–460PubMedCrossRefGoogle Scholar
  24. 24.
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343:1445–1453PubMedCrossRefGoogle Scholar
  25. 25.
    Mavrogeni S, Papadopoulos G, Karanasios E, Cokkinos DV (2008) How to image Kawasaki disease: a validation of different imaging techniques. Int J Cardiol 124(1):27–31PubMedCrossRefGoogle Scholar
  26. 26.
    Greil GF, Seeger A, Miller S, Claussen CD, Hofbeck M, Botnar RM, Sieverding L (2007) Coronary magnetic resonance angiography and vessel wall imaging in children with Kawasaki disease. Pediatr Radiol 37(7):666–673PubMedCrossRefGoogle Scholar
  27. 27.
    Uribe S, Hussain T, Valverde I, Tejos C, Irarrazaval P, Fava M, Beerbaum P, Botnar RM, Razavi R, Schaeffter T, Greil GF (2011) Congenital heart disease in children: coronary MR angiography during systole and diastole with dual cardiac phase whole-heart imaging. Radiology 260:232–240PubMedCrossRefGoogle Scholar
  28. 28.
    Pedersen SF, Thrysøe SA, Paaske WP, Thim T, Falk E, Ringgaard S, Kim WY (2011) Determination of oedema in porcine coronary arteries by T2 weighted cardiovascular magnetic resonance. J Cardiovasc Magn Reson 13:52PubMedCrossRefGoogle Scholar
  29. 29.
    Tangcharoen T, Bell A, Hegde S, Hussain T, Beerbaum P, Schaeffter T, Razavi R, Botnar RM, Greil GF (2011) Detection of coronary artery anomalies in infants and young children with congenital heart disease by using MR imaging. Radiology 259:240–247PubMedCrossRefGoogle Scholar
  30. 30.
    Mavrogeni S, Papadopoulos G, Douskou M, Kaklis S, Seimenis I, Varlamis G, Karanasios E, Krikos X, Giannoulia A, Cokkinos DV (2006) Magnetic resonance angiography, function and viability evaluation in patients with Kawasaki disease. J Cardiovasc Magn Reson 8(3):493–498PubMedCrossRefGoogle Scholar
  31. 31.
    Halliburton S, Arbab-Zadeh A, Dey D, Einstein AJ, Gentry R, George RT, Gerber T, Mahesh M, Weigold WG (2012) State-of-the-art in ct hardware and scan modes for cardiovascular CT. J Cardiovasc Comput Tomogr 6:154–163PubMedCrossRefGoogle Scholar
  32. 32.
    Han BK, Lindberg J, Grant K, Schwartz RS, Lesser JR (2011) Accuracy and safety of high pitch computed tomography imaging in young children with complex congenital heart disease. Am J Cardiol 107:1541–1546PubMedCrossRefGoogle Scholar
  33. 33.
    Harada M, Yokouchi Y, Oharaseki T, Matsui K, Tobayama H, Tanaka N, Akimoto K, Takahashi K, Kishiro M, Shimizu T, Takahashi K (2012) Histopathological characteristics of myocarditis in acute-phase Kawasaki disease. Histopathology 61(6):1156–1167PubMedCrossRefGoogle Scholar
  34. 34.
    Mavrogeni S, Spargias K, Markussis V, Kolovou G, Demerouti E, Papadopoulou E, Stavridis G, Kaklamanis L, Douskou M, Constantoulakis P, Cokkinos DV (2009) Myocardial inflammation in autoimmune diseases: investigation by cardiovascular magnetic resonance and endomyocardial biopsy. Inflamm Allergy Drug Targets 8(5):390–397PubMedCrossRefGoogle Scholar
  35. 35.
    Abdel-Aty H, Boye P, Zagrosek A, Wassmuth R, Kumar A, Messroghli D, Bock P, Dietz R, Friedrich MG, Schulz-Menger J (2005) Diagnostic performance of cardiovascular magnetic resonance in patients with suspected acute myocarditis: comparison of different approaches. J Am Coll Cardiol 45:1815–1822PubMedCrossRefGoogle Scholar
  36. 36.
    Mavrogeni S, Papadopoulos G, Karanasios E, Cokkinos DV (2009) Cardiovascular magnetic resonance imaging reveals myocardial inflammation and coronary artery ectasia during the acute phase of Kawasaki disease. Int J Cardiol 136(3):e51–e53PubMedCrossRefGoogle Scholar
  37. 37.
    Itamura S, Kamada M, Nakagawa N (2011) Kawasaki disease complicated with reversible splenial lesion and acute myocarditis. Pediatr Cardiol 32(5):696–699PubMedCrossRefGoogle Scholar
  38. 38.
    Cunha BA, Pherez FM, Alexiadis V, Gagos M, Strollo S (2010) Adult Kawasaki’s disease with myocarditis, splenomegaly, and highly elevated serum ferritin levels. Heart Lung 39(2):164–172PubMedCrossRefGoogle Scholar
  39. 39.
    Tacke CE, Kuipers IM, Groenink M, Spijkerboer AM, Kuijpers TW (2011) Cardiac magnetic resonance imaging for noninvasive assessment of cardiovascular disease during the follow-up of patients with Kawasaki disease. Circ Cardiovasc Imag 4(6):712–720CrossRefGoogle Scholar
  40. 40.
    Silvera S, Strach K, Bogaert J, Sommer T, Vignaux O (2011) Cardiomyopathies (hypertrophy and failure): what can offer cardiac magnetic resonance imaging? Presse Med 40(9 Pt 2):e425–e436PubMedCrossRefGoogle Scholar
  41. 41.
    Judd RM, Lugo-Olivieri CH, Arai M, Kondo T, Croisille P, Lima JA, Mohan V, Becker LC, Zerhouni EA (1995) Physiological basis of myocardial contrast enhancement in fast magnetic resonance images of 2-day-old reperfused canine infarcts. Circulation 92:1902–1910PubMedCrossRefGoogle Scholar
  42. 42.
    Kim RJ, Fieno DS, Parrish TB, Harris K, Chen EL, Simonetti O, Bundy J, Finn JP, Klocke FJ, Judd RM (1999) Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 100:1992–2002PubMedCrossRefGoogle Scholar
  43. 43.
    Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM (2000) Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 36:1985–1991PubMedCrossRefGoogle Scholar
  44. 44.
    Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. New Engl J Med 343:1445–1453PubMedCrossRefGoogle Scholar
  45. 45.
    Kaandorp TA, Lamb HJ, Poldermans D, Viergever EP, Boersma E, van der Wall EE, de Roos A, Bax JJ (2007) Assessment of right ventricular infarction with contrast-enhanced magnetic resonance imaging. Coron Artery Dis 18:39–43PubMedCrossRefGoogle Scholar
  46. 46.
    Kumar A, Abdel-Aty H, Kriedemann I, Schulz-Menger J, Gross CM, Dietz R, Friedrich MG (2006) Contrast enhanced cardiovascular magnetic resonance imaging of right ventricular infarction. J Am Coll Cardiol 48:1969–1976PubMedCrossRefGoogle Scholar
  47. 47.
    Larose E, Ganz P, Reynolds HG, Dorbala S, Di Carli MF, Brown KA, Kwong RY (2007) Right ventricular dysfunction assessed by cardiovascular magnetic resonance imaging predicts poor prognosis late after myocardial infarction. J Am Coll Cardiol 49:855–862PubMedCrossRefGoogle Scholar
  48. 48.
    Wu YW, Tadamura E, Kanao S, Yamamuro M, Marui A, Komeda M, Toma M, Kimura T, Togashi K (2007) Myocardial viability by contrast-enhanced cardiovascular magnetic resonance in patients with coronary artery disease: comparison with gated single-photon emission tomography and FDG position emission tomography. Int J Cardiovasc Imag 23(6):757–765CrossRefGoogle Scholar
  49. 49.
    Kwong RY, Chan AK, Brown KA et al (2006) Impact of unrecognized myocardial scar detected by cardiac magnetic resonance imaging on event-free survival in patients presenting with signs or symptoms of coronary artery disease. Circulation 113:2733–2743PubMedCrossRefGoogle Scholar
  50. 50.
    Sato Y, Matsumoto N, Komatsu S, Kunimasa T, Tani S, Imazeki T, Anazawa T, Kasamaki Y, Kunimoto S, Takahashi M, Saito S (2007) Coronary artery abnormalities after Kawasaki disease in an adult: depiction at whole heart coronary magnetic resonance angiography. Int J Cardiol 116(3):396–398PubMedCrossRefGoogle Scholar
  51. 51.
    Yoon YE, Kitagawa K, Kato S, Ishida M, Nakajima H, Kurita T, Ito M, Sakuma H (2012) Prognostic value of coronary magnetic resonance angiography for prediction of cardiac events in patients with suspected coronary artery disease. J Am Coll Cardiol 60(22):2316–2322PubMedCrossRefGoogle Scholar
  52. 52.
    Ibrahim T, Makowski MR, Jankauskas A, Maintz D, Karch M, Schachoff S, Manning WJ, Schömig A, Schwaiger M, Botnar RM (2009) Serial contrast-enhanced cardiac magnetic resonance imaging demonstrates regression of hyperenhancement within the coronary artery wall in patients after acute myocardial infarction. JACC Cardiovasc Imag 2(5):580–588CrossRefGoogle Scholar
  53. 53.
    Kim WY, Stuber M, Börnert P, Kissinger KV, Manning WJ, Botnar RM (2002) Three-dimensional black-blood cardiac magnetic resonance coronary vessel wall imaging detects positive arterial remodeling in patients with nonsignificant coronary artery disease. Circulation 106(3):296–299PubMedCrossRefGoogle Scholar
  54. 54.
    Doesch C, Seeger A, Doering J, Herdeg C, Burgstahler C, Claussen CD, Gawaz M, Miller S, May AE (2009) Risk stratification by adenosine stress cardiac magnetic resonance in patients with coronary artery stenoses of intermediate angiographic severity. JACC Cardiovasc Imag 2(4):424–433CrossRefGoogle Scholar
  55. 55.
    Kramer C, Barkhausen J, Flamm S, Kim R, Nagel E (2008) Standardized cardiovascular magnetic resonance imaging (CMR) protocols, society for cardiovascular magnetic resonance: board of trustes task force on standardized protocols. J Cardiovasc Magn Reson 10:35PubMedCrossRefGoogle Scholar
  56. 56.
    Luechinger R, Scwitter J (2008) CMR update. J Schwitter Switz 30–41Google Scholar
  57. 57.
    Kozerke S, Tsao J (2004) Reduced data acquisition methods in cardiac imaging. Top Magn Reson Imag 15:161–168CrossRefGoogle Scholar
  58. 58.
    Rangamani S, Varghese J, Li L, Harvey L, Hammel JM, Fletcher SE, Duncan KF, Danford DA, Kutty S (2012) Safety of cardiac magnetic resonance and contrast angiography for neonates and small infants: a 10-year single-institution experience. Pediatr Radiol 42(11):1339–1346PubMedCrossRefGoogle Scholar
  59. 59.
    Lockie T, Ishida M, Perera D, Chiribiri A, De Silva K, Kozerke S, Marber M, Nagel E, Rezavi R, Redwood S, Plein S (2011) High-resolution magnetic resonance myocardial perfusion imaging at 3.0-Tesla to detect hemodynamically significant coronary stenoses as determined by fractional flow reserve. J Am Coll Cardiol 57:70–75PubMedCrossRefGoogle Scholar
  60. 60.
    Hautvast GLTF, Chiribiri A, Lockie T, Breeuwer M, Nagel E, Plein S (2011) Quantitative analysis of transmural gradients in myocardial perfusion magnetic resonance images. Magn Res Med 66:1477–1487CrossRefGoogle Scholar
  61. 61.
    Chiribiri A, Hautvast GLTF, Lockie T, Schuster A, Bigalke B, Olivotti L, Redwood SR, Breeuwer M, Plein S, Nagel E (2013) Quantitative analysis of transmural perfusion gradients by high-resolution magnetic resonance versus fractional flow reserve for the assessment of coronary artery stenosis severity and location. JACC Cardiovasc Imag 6:600–609CrossRefGoogle Scholar
  62. 62.
    Giri S, Chung YC, Merchant A, Mihai G, Rajagopalan S, Raman SV, Simonetti OP (2009) T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson 11:56PubMedCrossRefGoogle Scholar
  63. 63.
    Verhaert D, Thavendiranathan P, Giri S, Mihai G, Rajagopalan S, Simonetti OP, Raman SV (2011) Direct t2 quantification of myocardial edema in acute ischemic injury. JACC Cardiovasc Imag 4(3):269–278CrossRefGoogle Scholar
  64. 64.
    Iles L, Pfluger H, Phrommintikul A, Cherayath J, Aksit P, Gupta SN, Kaye DM, Taylor AJ (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52:1574–1580PubMedCrossRefGoogle Scholar
  65. 65.
    Ladd SC, Debatin JF, Stang A, Bromen K, Moebus S, Nuefer M, Gizewski E, Wanke I, Doerfler A, Ladd ME, Benemann J, Erbel R, Forsting M, Schmermund A, Jöckel KH (1035) Whole-body MR vascular screening detects unsuspected concomitant vascular disease in coronary heart disease patients. Eur Radiol 2007(17):1035–1045Google Scholar
  66. 66.
    Papini GD, Di Leo G, Tritella S, Nano G, Cotticelli B, Clemente C, Tealdi DG, Sardanelli F (2011) Evaluation of inflammatory status of atherosclerotic carotid plaque before thromboendarterectomy using delayed contrast-enhanced subtracted images after magnetic resonance angiography. Eur J Radiol 80(3):e373–e380PubMedCrossRefGoogle Scholar
  67. 67.
    Cheng AS, Pegg TJ, Karamitsos TD, Searle N, Jerosch-Herold M, Choudhury RP, Banning AP, Neubauer S, Robson MD, Selvanayagam JB (2007) Cardiovascular magnetic resonance perfusion imaging at 3-Tesla for the detection of coronary artery disease: a comparison with 1.5-Tesla. J Am Coll Cardiol 49:2440–2449PubMedCrossRefGoogle Scholar
  68. 68.
    Gutberlet M, Schwinge K, Freyhardt P, Spors B, Grothoff M, Denecke T, Lüdemann L, Noeske R, Niendorf T, Felix R (2005) Influence of high magnetic field strengths and parallel acquisition strategies on image quality in cardiac 2d cine magnetic resonance imaging: comparison of 1.5 t vs. 3.0 t. Eur Radiol 15:1586–1597PubMedCrossRefGoogle Scholar
  69. 69.
    Lee HL, Shankaranarayanan A, Pohost GM, Nayak KS (2010) Improved coronary MR angiography using wideband steady state free precession at 3 Tesla with submillimeter resolution. J Magn Reson Imag 31(5):1224–1229CrossRefGoogle Scholar
  70. 70.
    Liu X, Bi X, Huang J, Jerecic R, Carr J, Li D (2008) Contrast-enhanced whole-heart coronary magnetic resonance angiography at 3.0 T: comparison with steady-state free precession technique at 1.5 t. Invest Radiol 43:663–668PubMedCrossRefGoogle Scholar
  71. 71.
    Uribe S, Hussain T, Valverde I, Tejos C, Irarrazaval P, Fava M, Beerbaum P, Botnar RM, Razavi R, Schaeffter T, Greil GF (2011) Congenital heart disease in children: coronary MR angiography during systole and diastole with dual cardiac phase whole-heart imaging. Radiology 260(1):232–240PubMedCrossRefGoogle Scholar
  72. 72.
    Chapon C, Lemaire L, Franconi F, Marescaux L, Legras P, Denizot B, Le Jeune JJ (2004) Assessment of myocardial viability in rats: evaluation of a new method using superparamagnetic iron oxide nanoparticles and Gd-DOTA at high magnetic field. Magn Reson Med 52(4):932–936PubMedCrossRefGoogle Scholar
  73. 73.
    Wu YL, Ye Q, Sato K, Foley LM, Hitchens TK, Ho C (2009) Noninvasive evaluation of cardiac allograft rejection by cellular and functional cardiac magnetic resonance. JACC Cardiovasc Imag 2(6):731–741CrossRefGoogle Scholar
  74. 74.
    Richards JM, Semple SI, MacGillivray TJ, Gray C, Langrish JP, Williams M, Dweck M, Wallace W, McKillop G, Chalmers RT, Garden OJ, Newby DE (2011) Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: a pilot study. Circ Cardiovasc Imag 4(3):274–281CrossRefGoogle Scholar
  75. 75.
    Kim JW, Goo HW (2013) Coronary artery abnormalities in Kawasaki disease: comparison between ct and mr coronary angiography. Acta Radiol 54:156–163PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Sophie Mavrogeni
    • 1
  • George Papadopoulos
    • 2
  • Tarique Hussain
    • 3
    • 4
  • Amedeo Chiribiri
    • 3
  • Rene Botnar
    • 3
  • Gerald F. Greil
    • 3
    • 4
  1. 1.Onassis Cardiac Surgery CenterAthensGreece
  2. 2.Aglaia Kyriakou Children’s HospitalAthensGreece
  3. 3.Division of Imaging Sciences and Biomedical Engineering, King’s College LondonSt. Thomas’ HospitalLondonUK
  4. 4.Department of Paediatric CardiologyEvelina Children’s HospitalLondonUK

Personalised recommendations