Impact of acute normobaric hypoxia on regional and global myocardial function: a speckle tracking echocardiography study

  • Björn GoebelEmail author
  • Veronika Handrick
  • Alexander Lauten
  • Michael Fritzenwanger
  • Juliane Schütze
  • Sylvia Otto
  • Hans R. Figulla
  • Thor Edvardsen
  • Tudor C. Poerner
  • Christian Jung
Original Paper


Aim of this study was to evaluate the influence of normobaric hypoxia on myocardial function in healthy humans. Fourteen subjects underwent two-dimensional speckle tracking echocardiography (2D-STE) examination during normoxia and in a normobaric hypoxia chamber. Examinations were performed at rest and during bicycle exercise test. The following parameters were quantified in both atria and ventricles by 2D-STE: Global Strain (S), systolic strain rate (SRS), early (SRE) and late (SRA) diastolic strain rate. During hypoxia SRS and SRE increased significantly in both ventricles compared to baseline. The increase of LV SRS and SRE during normoxic exercise was significantly higher when compared with exercise under hypoxia (for SRS −0.55 ± 0.22 vs. −0.34 ± 0.24 1/s, p = 0.024; for SRE 0.56 ± 0.29 vs. 0.23 ± 0.29 1/s, p = 0.005). For the right ventricle (RV) no significant difference of exercise induced increase of systolic contractility was found (SRS −1.07 ± 0.53 under normoxia vs. −1.28 ± 0.24 1/s under hypoxic conditions, p = 0.47). A shift from passive conduit (SRE) to active contraction (SRA) phase during hypoxia was noted for the right atrium (RA) (SRE/SRA 0.72 ± 0.13 under hypoxia vs. 1.17 ± 0.17 under normoxia). The ratio SRE/SRA of RA was closely related to pulmonary systolic pressure (r = −0.78, p < 0.001). Exposure to normobaric hypoxia leads to an increase of regional myocardial deformation in both ventricles. The contractile reserve during hypoxic exercise is reduced in LV, whereas RV systolic deformation rate is maintained. In addition, hypoxia had an impact on the ratio of passive conduit to active contraction phase in right atrium.


Hypoxia Myocardial function Speckle tracking echocardiography 


Conflict of interest

The authors have no conflicts of interest to disclose.


  1. 1.
    Abbas AE, Fortuin FD, Schiller NB, Appleton CP, Moreno CA, Lester SJ (2003) A simple method for noninvasive estimation of pulmonary vascular resistance. J Am Coll Cardiol 41(6):1021–1027. doi: 10.1016/S0735-1097(02)02973-X PubMedCrossRefGoogle Scholar
  2. 2.
    Allemann Y, Rotter M, Hutter D, Lipp E, Sartori C, Scherrer U, Seiler C (2004) Impact of acute hypoxic pulmonary hypertension on LV diastolic function in healthy mountaineers at high altitude. Am J Physiol Heart Circ Physiol 286(3):H856–H862. doi: 10.1152/ajpheart.00518.2003 PubMedCrossRefGoogle Scholar
  3. 3.
    Amundsen BH, Helle-Valle T, Edvardsen T, Torp H, Crosby J, Lyseggen E, Støylen A, Ihlen H, Lima JA, Smiseth OA, Slørdahl SA (2006) Noninvasive myocardial strain measurement by speckle tracking echocardiography: validation against sonomicrometry and tagged magnetic resonance imaging. J Am Coll Cardiol 47(4):789–793. doi: 10.1016/j.jacc.2005.10.040 PubMedCrossRefGoogle Scholar
  4. 4.
    Amundsen BH, Crosby J, Steen PA, Torp H, Slørdahl SA, Støylen A (2009) Regional myocardial long-axis strain and strain rate measured by different tissue Doppler and speckle tracking echocardiography methods: a comparison with tagged magnetic resonance imaging. Eur J Echocardiogr 10(2):229–237. doi: 10.1093/ejechocard/jen201 PubMedCrossRefGoogle Scholar
  5. 5.
    Bazett HC (1997) An analysis of the time-relations of electrocardiograms. Ann Noninvasive Electrocardiol 2(2):177–194. doi: 10.1111/j.1542-474X.1997.tb00325.x CrossRefGoogle Scholar
  6. 6.
    Bogaard HJ, Hopkins SR, Yamaya Y, Niizeki K, Ziegler MG, Wagner PD (2002) Role of autonomic nervous system in the reduced maximal cardiac output at altitude. J Appl Physiol 93(1):271–279. doi: 10.1152/japplphysiol.00323.2001 PubMedGoogle Scholar
  7. 7.
    Boussuges A, Molenat F, Burnet H, Cauchy E, Gardette B, Sainty JM, Jammes Y, Richalet JP (2000) Operation Everest III (Comex ‘97): modifications of cardiac function secondary to altitude-induced hypoxia. An echocardiographic and Doppler study. Am J Respir Crit Care Med 161(1):264–270PubMedGoogle Scholar
  8. 8.
    Brimioulle S, Wauthy P, Ewalenko P, Rondelet B, Vermeulen F, Kerbaul F, Naeije R (2003) Single-beat estimation of right ventricular end-systolic pressure-volume relationship. Am J Physiol Heart Circ Physiol 284(5):H1625–H1630. doi: 10.1152/ajpheart.01023.2002 PubMedGoogle Scholar
  9. 9.
    Cunningham WL, Becker EJ, Kreuzer F (1965) Catecholamines in plasma and urine at high altitude. J Appl Physiol 20(4):607–610PubMedGoogle Scholar
  10. 10.
    Dalen H, Thorstensen A, Aase SA, Ingul CB, Torp H, Vatten LJ, Stoylen A (2010) Segmental and global longitudinal strain and strain rate based on echocardiography of 1266 healthy individuals: the HUNT study in Norway. Eur J Echocardiogr 11(2):176–183. doi: 10.1093/ejechocard/jep194 PubMedCrossRefGoogle Scholar
  11. 11.
    de Vroomen M, Cardozo RH, Steendijk P, van Bel F, Baan J (2000) Improved contractile performance of right ventricle in response to increased RV afterload in newborn lamb. Am J Physiol Heart Circ Physiol 278(1):H100–H105PubMedGoogle Scholar
  12. 12.
    Gjesdal O, Helle-Valle T, Hopp E, Lunde K, Vartdal T, Aakhus S, Smith HJ, Ihlen H, Edvardsen T (2008) Noninvasive separation of large, medium, and small myocardial infarcts in survivors of reperfused ST-elevation myocardial infarction: a comprehensive tissue Doppler and speckle-tracking echocardiography study. Circ Cardiovasc Imaging 1(3):189–196. doi: 10.1161/CIRCIMAGING.108.781120 PubMedCrossRefGoogle Scholar
  13. 13.
    Goebel B, Gjesdal O, Kottke D, Otto S, Jung C, Lauten A, Figulla HR, Edvardsen T, Poerner TC (2011) Detection of irregular patterns of myocardial contraction in patients with hypertensive heart disease: a two-dimensional ultrasound speckle tracking study. J Hypertens 29(11):2255–2264. doi: 10.1097/HJH.0b013e32834bdd09 PubMedCrossRefGoogle Scholar
  14. 14.
    Gaynor SL, Maniar HS, Prasad SM, Steendijk P, Moon MR (2005) Reservoir and conduit function of right atrium: impact on right ventricular filling and cardiac output. Am J Physiol Heart Circ Physiol 288(5):H2140–H2145. doi: 10.1152/ajpheart.00566.200 PubMedCrossRefGoogle Scholar
  15. 15.
    Greenberg NL, Firstenberg MS, Castro PL, Main M, Travaglini A, Odabashian JA, Drinko JK, Rodriguez LL, Thomas JD, Garcia MJ (2002) Doppler-derived myocardial strain rate is a strong index of left ventricular contractility. Circulation 105(1):99–105. doi: 10.1161/hc0102.101396 PubMedCrossRefGoogle Scholar
  16. 16.
    Hansen J, Sander M (2003) Sympathetic neural overactivity in healthy humans after prolonged exposure to hypobaric hypoxia. J Physiol 546(Pt 3):921–929. doi: 10.1113/jphysiol.2002.031765 PubMedCrossRefGoogle Scholar
  17. 17.
    Huez S, Retailleau K, Unger P, Pavelescu A, Vachiéry JL, Derumeaux G, Naeije R (2005) Right and left ventricular adaptation to hypoxia: a tissue Doppler imaging study. Am J Physiol Heart Circ Physiol 289(4):H1391–H1398. doi: 10.1152/ajpheart.00332.2005 PubMedCrossRefGoogle Scholar
  18. 18.
    Huez S, Faoro V, Guénard H, Martinot JB, Naeije R (2009) Echocardiographic and tissue Doppler imaging of cardiac adaptation to high altitude in native highlanders versus acclimatized lowlanders. Am J Cardiol 103(11):1605–1609. doi: 10.1016/j.amjcard.2009.02.006 PubMedCrossRefGoogle Scholar
  19. 19.
    Kaluzynski K, Chen X, Emelianov SY, Skovoroda AR, O’Donnell M (2001) Strain rate imaging using two-dimensional speckle tracking. IEEE Trans Ultrason Ferroelectr Freq Control 48(4):1111–1123. doi: 10.1109/58.935730 PubMedCrossRefGoogle Scholar
  20. 20.
    Kaufmann BA, Bernheim AM, Kiencke S, Fischler M, Sklenar J, Mairbäurl H, Maggiorini M, Brunner-La Rocca HP (2008) Evidence supportive of impaired myocardial blood flow reserve at high altitude in subjects developing high-altitude pulmonary edema. Am J Physiol Heart Circ Physiol 294(4):H1651–H1657. doi: 10.1152/ajpheart.00760.2007 PubMedCrossRefGoogle Scholar
  21. 21.
    Komniski MS, Yakushev S, Bogdanov N, Gassmann M, Bogdanova A (2011) Interventricular heterogeneity in rat heart responses to hypoxia: the tuning of glucose metabolism, ion gradients, and function. Am J Physiol Heart Circ Physiol 300(5):H1645–H1652. doi: 10.1152/ajpheart.00220.2010 PubMedCrossRefGoogle Scholar
  22. 22.
    Lang RM, Bierig M, Devereux RB, Flachskampf FA, Foster E, Pellikka PA, Picard MH, Roman MJ, Seward J, Shanewise J, Solomon S, Spencer KT, St. John Sutton M, Stewart WJ (2006) Recommendations for chamber quantification. Eur J Echocardiogr 7(2):79–108. doi: 10.1016/j.euje.2005.12.014 PubMedCrossRefGoogle Scholar
  23. 23.
    Larsen KO, Sjaastad I, Svindland A, Krobert KA, Skjønsberg OH, Christensen G (2006) Alveolar hypoxia induces left ventricular diastolic dysfunction and reduces phosphorylation of phospholamban in mice. Am J Physiol Heart Circ Physiol 291(2):H507–H516. doi: 10.1152/ajpheart.00862.2005 PubMedCrossRefGoogle Scholar
  24. 24.
    Maniar HS, Prasad SM, Gaynor SL, Chu CM, Steendijk P, Moon MR (2003) Impact of pericardial restraint on right atrial mechanics during acute right ventricular pressure load. Am J Physiol Heart Circ Physiol 284(1):H350–H357. doi: 10.1152/ajpheart.00444.2002 PubMedGoogle Scholar
  25. 25.
    Naeije R, Mélot C, Mols P, Hallemans R (1982) Effects of vasodilators on hypoxic pulmonary vasoconstriction in normal man. Chest 82(4):404–410. doi: 10.1378/chest.82.4.404 PubMedCrossRefGoogle Scholar
  26. 26.
    Naghshin J, McGaffin KR, Witham WG, Mathier MA, Romano LC, Smith SH, Janczewski AM, Kirk JA, Shroff SG, O’Donnell CP (2009) Chronic intermittent hypoxia increases left ventricular contractility in C57BL/6 J mice. J Appl Physiol 107(3):787–793. doi: 10.1152/japplphysiol.91256.2008 PubMedCrossRefGoogle Scholar
  27. 27.
    Oliver RM, Peacock AJ, Challenor VF, Fleming JS, Waller DG (1991) The effect of acute hypoxia on right ventricular function in healthy adults. Int J Cardiol 31(2):235–241PubMedCrossRefGoogle Scholar
  28. 28.
    Quiñones MA, Otto CM, Stoddard M, Waggoner A, Zoghbi WA (2002) Recommendations for quantification of Doppler echocardiography: a report from the Doppler Quantification Task Force of the Nomenclature and Standards Committee of the American Society of Echocardiography. J Am Soc Echocardiogr 15(2):167–184. doi: 10.1067/mje.2002.120202 PubMedCrossRefGoogle Scholar
  29. 29.
    Reeves JT, Groves BM, Sutton JR, Wagner PD, Cymerman A, Malconian MK, Rock PB, Young PM, Houston CS (1987) Operation Everest II: preservation of cardiac function at high altitude. J Appl Physiol 63(2):531–539PubMedGoogle Scholar
  30. 30.
    Saraiva RM, Demirkol S, Buakhamsri A, Greenberg N, Popović ZB, Thomas JD, Klein AL (2010) Left atrial strain measured by two-dimensional speckle tracking represents a new tool to evaluate left atrial function. J Am Soc Echocardiogr 23(2):172–180. doi: 10.1016/j.echo.2009.11.003 PubMedCrossRefGoogle Scholar
  31. 31.
    Suarez J, Alexander JK, Houston CS (1987) Enhanced left ventricular systolic performance at high altitude during Operation Everest II. Am J Cardiol 60(1):137–142. doi: 10.1016/0002-9149(87)91000-9 PubMedCrossRefGoogle Scholar
  32. 32.
    Vianna-Pinton R, Moreno CA, Baxter CM, Lee KS, Tsang TS, Appleton CP (2009) Two-dimensional speckle-tracking echocardiography of the left atrium: feasibility and regional contraction and relaxation differences in normal subjects. J Am Soc Echocardiogr 22(3):299–305. doi: 10.1016/j.echo.2008.12.017 PubMedCrossRefGoogle Scholar
  33. 33.
    Voeller RK, Aziz A, Maniar HS, Ufere NN, Taggar AK, Bernabe NJ Jr, Cupps BP, Moon MR (2011) Differential modulation of right ventricular strain and right atrial mechanics in mild vs. severe pressure overload. Am J Physiol Heart Circ Physiol 301(6):H2362–H2371. doi: 10.1152/ajpheart.00138.2011 PubMedCrossRefGoogle Scholar
  34. 34.
    Von Euler US, Liljestrand G (1946) Observations on the pulmonary arterial blood pressure in the cat. Acta Physiol Scand 12:301–320CrossRefGoogle Scholar
  35. 35.
    Weidemann F, Jamal F, Sutherland GR, Claus P, Kowalski M, Hatle L, De Scheerder I, Bijnens B, Rademakers FE (2002) Myocardial function defined by strain rate and strain during alterations in inotropic states and heart rate. Am J Physiol Heart Circ Physiol 283(2):H792–H799. doi: 10.1152/ajpheart.00025.2002 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2012

Authors and Affiliations

  • Björn Goebel
    • 1
    Email author
  • Veronika Handrick
    • 2
  • Alexander Lauten
    • 1
  • Michael Fritzenwanger
    • 1
  • Juliane Schütze
    • 3
  • Sylvia Otto
    • 1
  • Hans R. Figulla
    • 1
  • Thor Edvardsen
    • 4
    • 5
  • Tudor C. Poerner
    • 1
  • Christian Jung
    • 1
  1. 1.Division of Cardiology, 1st Department of MedicineUniversity Hospital of JenaJenaGermany
  2. 2.Department of Biomedical EngineeringUniversity of Applied Sciences JenaJenaGermany
  3. 3.Department of Electrical Engineering and Information TechnologyUniversity of Applied Sciences JenaJenaGermany
  4. 4.Department of CardiologyRikshospitalet University HospitalOsloNorway
  5. 5.University of OsloOsloNorway

Personalised recommendations