Reduced global longitudinal and radial strain with normal left ventricular ejection fraction late after effective repair of aortic coarctation: a CMR feature tracking study

  • Shelby Kutty
  • Sheela Rangamani
  • Jeeva Venkataraman
  • Ling Li
  • Andreas Schuster
  • Scott E. Fletcher
  • David A. Danford
  • Philipp Beerbaum
Original Paper


We sought to determine whether global and regional left ventricular (LV) strain parameters were altered in repaired coarctation of the aorta (COA) with normal LV ejection fraction (EF) when compared with healthy adult controls, and whether such alterations were related to LV hypertrophy (LVH). We identified 81 patients after COA repair (31 female, age 25 ± 8.5 years) with inclusion criteria at follow-up CMR of: age ≥13 years, time post-repair ≥10 years, no aortic valve disease, LV-EF >50 %). LV deformation indices derived using CMR-feature tracking and volumetric EF were compared between COA patients and normal controls (n = 20, 10 female, age 37 ± 7 years), and between COA with versus without LVH. In repaired COA versus controls, LV-EF (%) was 62 ± 7.2 versus 58 ± 3.0 (p = 0.01), and LV mass (g/m2) 66 ± 16.8 versus 57.7 ± 6.0 (p = 0.0001). LV global longitudinal strain (GLS) was decreased to −17.0 ± 4.7 % in COA (−20 ± 5 % in controls, p = 0.02), and global radial strain (GRS) reduced to 40 ± 15 % (50 ± 12.4 % in controls, p = 0.003). The global circumferential strain (GCS) was preserved in COA at −23 ± 4.7 % (−24.6 ± 2.4 % in controls, p = 0.14). Regionally, LS decrease was marked in the basal segments (septal, p = 0.005, lateral, p = 0.013). In COA with LVH (n = 45, mass 76.3 ± 12.8 g/m2) versus without LVH (n = 36, mass 52.2 ± 10 g/m2), GLS was more markedly decreased (−15.7 ± 4.8 vs. −18.5 ± 4.2 %, p = 0.016, but GRS and GCS were similar (p = 0.49 and 0.27). In post-repair COA with normal LV-EF, GLS and GRS are reduced whilst GCS is preserved. GLS reduction is more pronounced in the presence of LVH. GLS may qualify as indicator of early LV dysfunction.


Adult congenital heart disease Pediatric cardiology Coarctation of the aorta Cardiovascular magnetic resonance Left ventricular mechanics Feature tracking 



Coarctation of the aorta


Congenital heart disease


Cardiac magnetic resonance-feature tracking


Left ventricle



The authors appreciate the assistance of the Magnetic Resonance Imaging laboratory staff at the Children’s Hospital and Medical Center. We also thank Berthold Klas, BS, TomTec Imaging Systems, TomTec Corporation USA for technical assistance. SK receives support from the American College of Cardiology Foundation and the American Heart Association.

Conflict of interest



  1. 1.
    Fixler DE, Pastor P, Chamberlin M, Sigman E, Eifler CW (1990) Trends in congenital heart disease in Dallas County births 1971–1984. Circulation 81:137–142Google Scholar
  2. 2.
    Cohen M, Fuster V, Steele PM, Driscoll D, McGoon DC (1989) Coarctation of the aorta. Long-term follow-up and prediction of outcome after surgical correction. Circulation 80(4):840–845PubMedCrossRefGoogle Scholar
  3. 3.
    Toro-Salazar OH, Steinberger J, Thomas W, Rocchini AP, Carpenter B, Moller JH (2002) Long-term follow-up of patients after coarctation of the aorta repair. Am J Cardiol 89:541–547PubMedCrossRefGoogle Scholar
  4. 4.
    Moskowitz WB, Schieken RM, Mosteller M, Bossano R (1990) Altered systolic and diastolic function in children after “successful” repair of coarctation of the aorta. Am Heart J 120:103–109PubMedCrossRefGoogle Scholar
  5. 5.
    Kimball T, Reynolds J, Mays W, Khoury P, Claytor R, Daniels SR (1994) Persistent hyperdynamic cardiovascular state at rest and during exercise in children after successful repair of coarctation of the aorta. J Am Coll Cardiol 24:194–200PubMedCrossRefGoogle Scholar
  6. 6.
    Gentles TL, Sanders SP, Colan SD (2000) Misrepresentation of left ventricular contractile function by endocardial indexes: clinical implications after coarctation repair. Am Heart J 140:585–595. doi: 10.1067/mhj.2000.109642 PubMedCrossRefGoogle Scholar
  7. 7.
    Leandro J, Smallhorn JF, Benson L, Musewe N, Balfe JW, Dyck JD, West L, Freedom R (1992) Ambulatory blood pressure monitoring and left ventricular mass and function after successful surgical repair of coarctation of the aorta. J Am Coll Cardiol 20:197–204PubMedCrossRefGoogle Scholar
  8. 8.
    Hor KN, Gottliebson WM, Carson C, Wash E, Cnota J, Fleck R, Wansapura J, Klimeczek P, Al-Khalidi HR, Chung ES, Benson DW, Mazur W (2010) Comparison of magnetic resonance feature tracking for strain calculation with harmonic phase imaging analysis. JACC Cardiovasc Imaging 3:144–151. doi: 10.1016/j.jcmg.2009.11.006 PubMedCrossRefGoogle Scholar
  9. 9.
    Truong UT, Li X, Broberg CS, Houle H, Schaal M, Ashraf M, Kilner P, Sheehan FH, Sable CA, Ge S, Sahn DJ (2010) Significance of mechanical alterations in single ventricle patients on twisting and circumferential strain as determined by analysis of strain from gradient cine magnetic resonance imaging sequences. Am J Cardiol 105:1465–1469. doi: 10.1016/j.amjcard.2009.12.074 PubMedCrossRefGoogle Scholar
  10. 10.
    Schuster A, Kutty S, Padiyath A, Parish V, Gribben P, Danford DA, Makowski MR, Bigalke B, Beerbaum P, Nagel E (2011) Cardiac magnetic resonance myocardial feature tracking detects quantitative wall motion during dobutamine stress. J Cardiovasc Magn Reson 13:58Google Scholar
  11. 11.
    Schuster A, Paul M, Bettencourt N, Morton G, Chiribiri A, Ishida M et al (2011) Cardiovascular magnetic resonance myocardial feature tracking for quantitative viability assessment in ischemic cardiomyopathy. Int J CardiolGoogle Scholar
  12. 12.
    Ortega M, Triedman JK, Geva T, Harrild DM (2011) Relation of left ventricular dyssynchrony measured by cardiac magnetic resonance tissue tracking in repaired tetralogy of fallot to ventricular tachycardia and death. Am J Cardiol 107:1535–1540. doi: 10.1016/j.amjcard.2011.01.032 PubMedCrossRefGoogle Scholar
  13. 13.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, Pennell DJ, Rumberger JA, Ryan T, Verani MS (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105:539–542PubMedCrossRefGoogle Scholar
  14. 14.
    Sarikouch S, Peters B, Gutberlet M, Leismann B, Kelter-Kloepping A, Koerperich H, Kuehne T, Beerbaum P (2010) Sex-specific pediatric percentiles for ventricular size and mass as reference values for cardiac MRI: assessment by steady-state free-precession and phase-contrast MRI flow. Circ Cardiovasc Imaging 3:65–76. doi: 10.1161/circimaging.109.859074 PubMedCrossRefGoogle Scholar
  15. 15.
    de Divitiis M, Rubba P, Calabro R (2005) Arterial hypertension and cardiovascular prognosis after successful repair of aortic coarctation: a clinical model for the study of vascular function. Nutr Metab Cardiovasc Dis 15:382–394Google Scholar
  16. 16.
    Kilner PJ, Geva T, Kaemmerer H, Trindade PT, Schwitter J, Webb GD (2010) Recommendations for cardiovascular magnetic resonance in adults with congenital heart disease from the respective working groups of the European Society of Cardiology. Eur Heart J 31:794–805Google Scholar
  17. 17.
    Therrien J, Thorne SA, Wright A, Kilner PJ, Somerville J (2000) Repaired coarctation: a “cost-effective” approach to identify complications in adults. J Am Coll Cardiol 35:997–1002Google Scholar
  18. 18.
    Iwahashi N, Nakatani S, Kanzaki H, Hasegawa T, Abe H, Kitakaze M (2006) Acute improvement in myocardial function assessed by myocardial strain and strain rate after aortic valve replacement for aortic stenosis. J Am Soc Echocardiogr 19:1238–1244. doi: 10.1016/j.echo.2006.04.041 PubMedCrossRefGoogle Scholar
  19. 19.
    Poulsen SH, Sogaard P, Nielsen-Kudsk JE, Egeblad H (2007) Recovery of left ventricular systolic longitudinal strain after valve replacement in aortic stenosis and relation to natriuretic peptides. J Am Soc Echocardiogr 20:877–884. doi: 10.1016/j.echo.2006.11.020 PubMedCrossRefGoogle Scholar
  20. 20.
    Stanton T, Leano R, Marwick TH (2009) Prediction of all-cause mortality from global longitudinal speckle strain: comparison with ejection fraction and wall motion scoring. Circ Cardiovasc Imaging 2:356–364. doi: 10.1161/CIRCIMAGING.109.862334 PubMedCrossRefGoogle Scholar
  21. 21.
    Kempny A, Diller GP, Orwat S, Kaleschke G, Kerckhoff G, Bunck AC et al (2012) Right ventricular-left ventricular interaction in adults with Tetralogy of Fallot: a combined cardiac magnetic resonance and echocardiographic speckle tracking study. Int J Cardiol 154:259–264Google Scholar
  22. 22.
    di Salvo G, Pacileo G, Limongelli G, Verrengia M, Rea A, Santoro G et al (2007) Abnormal regional myocardial deformation properties and increased aortic stiffness in normotensive patients with aortic coarctation despite successful correction: an ABPM, standard echocardiography and strain rate imaging study. Clin Sci (Lond) 113:259–266Google Scholar
  23. 23.
    Young AA, Cowan BR, Occleshaw CJ, Oxenham HC, Gentles TL (2002) Temporal evolution of left ventricular strain late after repair of coarctation of the aorta using 3D MR tissue tagging. J Cardiovasc Magn Reson 4:233–243Google Scholar
  24. 24.
    Laser KT, Haas NA, Jansen N, Schäffler R, Palacios Argueta JR, Zittermann A, Peters B, Körperich H, Kececioglu D (2009) Is torsion a suitable echocardiographic parameter to detect acute changes in left ventricular afterload in children? J Am Soc Echocardiogr 22:1121–1128PubMedCrossRefGoogle Scholar
  25. 25.
    Dinh W, Nickl W, Smettan J, Kramer F, Krahn T, Scheffold T et al (2010) Reduced global longitudinal strain in association to increased left ventricular mass in patients with aortic valve stenosis and normal ejection fraction: a hybrid study combining echocardiography and magnetic resonance imaging. Cardiovasc Ultrasound 8:29Google Scholar
  26. 26.
    Aurigemma GP, Silver KH, Priest MA, Gaasch WH (1995) Geometric changes allow normal ejection fraction despite depressed myocardial shortening in hypertensive left ventricular hypertrophy. J Am Coll Cardiol 26:195–202PubMedCrossRefGoogle Scholar
  27. 27.
    Anversa P, Beghi C, Kikkawa Y, Olivetti G (1986) Myocardial infarction in rats. Infarct size, myocyte hypertrophy, and capillary growth. Circ Res 58:26–37PubMedCrossRefGoogle Scholar
  28. 28.
    Marcus ML, Harrison DG, Chilian WM, Koyanagi S, Inou T, Tomanek RJ, Martins JB, Eastham CL, Hiratzka LF (1987) Alterations in the coronary circulation in hypertrophied ventricles. Circulation 75:I19–I25PubMedGoogle Scholar
  29. 29.
    Karam R, Healy BP, Wicker P (1990) Coronary reserve is depressed in postmyocardial infarction reactive cardiac hypertrophy. Circulation 81:238–246PubMedCrossRefGoogle Scholar
  30. 30.
    Safar ME, Levy BI, Struijker-Boudier H (2003) Current perspectives on arterial stiffness and pulse pressure in hypertension and cardiovascular diseases. Circulation 107:2864–2869. doi: 10.1161/01.cir.0000069826.36125.b4 PubMedCrossRefGoogle Scholar
  31. 31.
    Vitarelli A, Conde Y, Cimino E, D’Orazio S, Stellato S, Battaglia D, Padella V, Caranci F, Continanza G, Dettori O, Capotosto L (2008) Assessment of ascending aorta distensibility after successful coarctation repair by strain Doppler echocardiography. J Am Soc Echocardiogr 21:729–736. doi: 10.1016/j.echo.2007.10.007 PubMedCrossRefGoogle Scholar
  32. 32.
    Biederman RW, Doyle M, Yamrozik J, Williams RB, Rathi VK, Vido D et al (2005) Physiologic compensation is supranormal in compensated aortic stenosis: does it return to normal after aortic valve replacement or is it blunted by coexistent coronary artery disease? An intramyocardial magnetic resonance imaging study. Circulation 112:I429–I436Google Scholar

Copyright information

© Springer Science+Business Media, B.V. 2012

Authors and Affiliations

  • Shelby Kutty
    • 1
  • Sheela Rangamani
    • 1
  • Jeeva Venkataraman
    • 1
  • Ling Li
    • 1
  • Andreas Schuster
    • 2
  • Scott E. Fletcher
    • 1
  • David A. Danford
    • 1
  • Philipp Beerbaum
    • 3
  1. 1.Joint Division of Pediatric Cardiology, Children’s Hospital and Medical CenterUniversity of Nebraska College of Medicine/Creighton University School of MedicineOmahaUSA
  2. 2.Division of Imaging Sciences, King’s College London British Heart Foundation Center of ExcellenceNational Institute of Health Research Biomedical Research Center at Guy’s and St. Thomas’ NHS Foundation Trust, The Rayne Institute, St. Thomas’ HospitalLondonUK
  3. 3.Department for Radiology and Pediatric CardiologyRadboud University Nijmegen Medical CentreNijmegenThe Netherlands

Personalised recommendations