The International Journal of Cardiovascular Imaging

, Volume 28, Issue 6, pp 1357–1368

Sources of variation and bias in assessing left ventricular volumes and dyssynchrony using three-dimensional echocardiography

  • Denisa Muraru
  • Luigi P. Badano
  • Davide Ermacora
  • Gianluca Piccoli
  • Sabino Iliceto
Original Paper

Abstract

Study aim To explore various sources of variability in the measurement of LV volumes and dyssynchrony by 3D echocardiography (3DE). Methods We studied 100 patients (58 ± 18 years, 51 men) to assess the impact of: (1) manual editing; (2) 3D data set temporal resolution; (3) LV 16- or 17-segmentation model; (4) software sensitivity for automated endocardial surface detection; and (5) image quality, on the measurement of LV end-diastolic (EDV) and end-systolic (ESV) volumes, sphericity indices (EDSI, ESSI), ejection fraction (EF) and dyssynchrony (SDI). Two- and 4-beat LV full-volume data sets were analyzed and compared. Cardiac magnetic resonance (CMR) was used as reference in 26 patients. Results Manual editing of endocardial surface improved the agreement of LV volumes with CMR, but increased SDI (SDI17: 5.6 ± 0.5% vs. 4.3 ± 0.3%; P < 0.0001). Data set temporal resolution had no significant impact on LV parameters. Adding the 17th to 16-segment LV model did not significantly increase SDI. Reducing software sensitivity in endocardial surface detection increased EDV (101 ± 46 ml vs. 118 ± 50 ml) and sphericity, decreased SDI (SDI 17: 6.7 ± 3.3% vs. 2.9 ± 3.7%) (P < 0.05 for all), and improved agreement of EDV and ESV with CMR. Impact of software sensitivity in LV endocardium detection on LV parameters was related to image quality: higher on SDI in pts with suboptimal quality (SDI 17 bias 4.5% vs. 3.2%, P < 0.05); higher on LV volumes in patients with optimal quality (EDV bias 14 ml vs. 19 ml, ESV bias 5 ml vs. 9 ml; P = 0.01). Conclusions Manual editing, software settings and image quality significantly impact on 3D LV volumes and dyssynchrony assessment.

Keywords

Three-dimensional echocardiography Left ventricular volumes Left ventricular dyssynchrony Semi-automated software Technical factors Temporal resolution 

Abbreviations

2DE

Two-dimensional echocardiography

3DE

Three-dimensional echocardiography

CMR

Cardiac magnetic resonance

CRT

Cardiac resynchronization therapy

EDSI

End-diastolic sphericity index

EDV

End-diastolic volume

ESSI

End-systolic sphericity index

ESV

End-systolic volume

LV

Left ventricle/ventricular

LVMD

Left ventricular mechanical dyssynchrony

SDI

Systolic dyssynchrony index

References

  1. 1.
    Sonne C, Sugeng L, Takeuchi M, Weinert L, Childers R, Watanabe N et al (2009) Real-time 3-dimensional echocardiographic assessment of left ventricular dyssynchrony: pitfalls in patients with dilated cardiomyopathy. JACC Cardiovasc Imaging 2:802–812PubMedCrossRefGoogle Scholar
  2. 2.
    Kadish AH, Reiffel JA, Naccarelli GV, DiMarco JP (2008) Device therapies in the post-myocardial infarction patient with left ventricular dysfunction. Am J Cardiol 102:29G–37GPubMedCrossRefGoogle Scholar
  3. 3.
    Nanthakumar K, Epstein AE, Kay GN, Plumb VJ, Lee DS (2004) Prophylactic implantable cardioverter-defibrillator therapy in patients with left ventricular systolic dysfunction: a pooled analysis of 10 primary prevention trials. J Am Coll Cardiol 44:2166–2172PubMedCrossRefGoogle Scholar
  4. 4.
    Otto CM (2000) Timing of aortic valve surgery. Heart 84:211–218PubMedCrossRefGoogle Scholar
  5. 5.
    Otto CM, Salerno CT (2005) Timing of surgery in asymptomatic mitral regurgitation. N Engl J Med 352:928–929PubMedCrossRefGoogle Scholar
  6. 6.
    Wang TJ, Evans JC, Benjamin EJ, Levy D, LeRoy EC, Vasan RS (2003) Natural history of asymptomatic left ventricular systolic dysfunction in the community. Circulation 108:977–982PubMedCrossRefGoogle Scholar
  7. 7.
    Lang RM, Mor-Avi V, Sugeng L, Nieman PS, Sahn DJ (2006) Three-dimensional echocardiography: the benefits of the additional dimension. J Am Coll Cardiol 48:2053–2069PubMedCrossRefGoogle Scholar
  8. 8.
    Jenkins C, Bricknell K, Chan J, Hanekom L, Marwick TH (2007) Comparison of two- and three-dimensional echocardiography with sequential magnetic resonance imaging for evaluating left ventricular volume and ejection fraction over time in patients with healed myocardial infarction. Am J Cardiol 99:300–306PubMedCrossRefGoogle Scholar
  9. 9.
    Shimada YJ, Shiota T (2011) A meta-analysis and investigation for the source of bias of left ventricular volumes and function by three-dimensional echocardiography in comparison with magnetic resonance imaging. Am J Cardiol 107:126–138PubMedCrossRefGoogle Scholar
  10. 10.
    Jenkins C, Bricknell K, Hanekom L, Marwick TH (2004) Reproducibility and accuracy of echocardiographic measurements of left ventricular parameters using real-time three-dimensional echocardiography. J Am Coll Cardiol 44:878–886PubMedCrossRefGoogle Scholar
  11. 11.
    Mor-Avi V, Jenkins C, Kuhl HP, Nesser HJ, Marwick T, Franke A et al (2008) Real-time 3-dimensional echocardiographic quantification of left ventricular volumes: multicenter study for validation with magnetic resonance imaging and investigation of sources of error. JACC Cardiovasc Imaging 1:413–423PubMedCrossRefGoogle Scholar
  12. 12.
    Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R et al (2006) Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 114:654–661PubMedCrossRefGoogle Scholar
  13. 13.
    Muraru D, Badano LP, Piccoli G, Gianfagna P, Del Mestre L, Ermacora D et al (2010) Validation of a novel automated border-detection algorithm for rapid and accurate quantitation of left ventricular volumes based on three-dimensional echocardiography. Eur J Echocardiogr 11:359–368PubMedCrossRefGoogle Scholar
  14. 14.
    Kapetanakis S, Kearney MT, Siva A, Gall N, Cooklin M, Monaghan MJ (2005) Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation 112:992–1000PubMedCrossRefGoogle Scholar
  15. 15.
    Marsan NA, Bleeker GB, Ypenburg C, Ghio S, Van de Veire NR, Holman ER et al (2008) Real-time three-dimensional echocardiography permits quantification of left ventricular mechanical dyssynchrony and predicts acute response to cardiac resynchronization therapy. J Cardiovasc Electrophysiol 19:392–399PubMedCrossRefGoogle Scholar
  16. 16.
    Soliman OI, van Dalen BM, Nemes A, van der Zwaan HB, Vletter WB, ten Cate FJ et al (2009) Quantification of left ventricular systolic dyssynchrony by real-time three-dimensional echocardiography. J Am Soc Echocardiogr 22:232–239PubMedCrossRefGoogle Scholar
  17. 17.
    Deplagne A, Bordachar P, Reant P, Montaudon M, Reuter S, Laborderie J et al (2009) Additional value of three-dimensional echocardiography in patients with cardiac resynchronization therapy. Arch Cardiovasc Dis 102:497–508PubMedCrossRefGoogle Scholar
  18. 18.
    Kapetanakis S, Bhan A, Murgatroyd F, Kearney MT, Gall N, Zhang Q et al (2011) Real-time 3D echo in patient selection for cardiac resynchronization therapy. JACC Cardiovasc Imaging 4:16–26PubMedCrossRefGoogle Scholar
  19. 19.
    Gimenes VM, Vieira ML, Andrade MM, Pinheiro J Jr, Hotta VT, Mathias W Jr (2008) Standard values for real-time transthoracic three-dimensional echocardiographic dyssynchrony indexes in a normal population. J Am Soc Echocardiogr 21:1229–1235PubMedCrossRefGoogle Scholar
  20. 20.
    Liodakis E, Sharef OA, Dawson D, Nihoyannopoulos P (2009) The use of real-time three-dimensional echocardiography for assessing mechanical synchronicity. Heart 95:1865–1871PubMedCrossRefGoogle Scholar
  21. 21.
    Lang RM, Mor-Avi V, Dent JM, Kramer CM (2009) Three-dimensional echocardiography: is it ready for everyday clinical use? JACC Cardiovasc Imaging 2:114–117PubMedCrossRefGoogle Scholar
  22. 22.
    Monaghan M, Bax J, Franke A, Kamp O, Kuehl H, Nihoyannopoulos P et al (2009) 3-dimensional echocardiographic assessment of left ventricular dyssynchrony: an alternative viewpoint. JACC Cardiovasc Imaging 2:1334–1335PubMedCrossRefGoogle Scholar
  23. 23.
    Willems JL, Robles de Medina EO, Bernard R, Coumel P, Fisch C, Krikler D et al (1985) Criteria for intraventricular conduction disturbances and pre-excitation. World Health Organizational/International Society and Federation for Cardiology Task Force Ad Hoc. J Am Coll Cardiol 5:1261–1275PubMedCrossRefGoogle Scholar
  24. 24.
    Senior R, Becher H, Monaghan M, Agati L, Zamorano J, Vanoverschelde JL et al (2009) Contrast echocardiography: evidence-based recommendations by European Association of Echocardiography. Eur J Echocardiogr 10:194–212PubMedCrossRefGoogle Scholar
  25. 25.
    Nucifora G, Badano LP, Dall’Armellina E, Gianfagna P, Allocca G, Fioretti PM (2009) Fast data acquisition and analysis with real time triplane echocardiography for the assessment of left ventricular size and function: a validation study. Echocardiography 26:66–75PubMedCrossRefGoogle Scholar
  26. 26.
    Koos R, Neizel M, Schummers G, Krombach GA, Stanzel S, Güntheret RW et al (2008) Feasibility and initial experience of assessment of mechanical dyssynchrony using cardiovascular magnetic resonance and semi-automatic border detection. J Cardiovasc Magn Reson 10:49PubMedCrossRefGoogle Scholar
  27. 27.
    Tatsioni A, Zarin DA, Aronson N, Samson DJ, Flamm CR, Schmid C et al (2005) Challenges in systematic reviews of diagnostic technologies. Ann Intern Med 142:1048–1055PubMedGoogle Scholar
  28. 28.
    Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J et al (2008) Results of the predictors of response to CRT (PROSPECT) trial. Circulation 117:2608–2616PubMedCrossRefGoogle Scholar
  29. 29.
    Monaghan M (2009) Echocardiographic assessment of left ventricular dyssynchrony–is three-dimensional echocardiography just the latest kid on the block? J Am Soc Echocardiogr 22:240–241PubMedCrossRefGoogle Scholar
  30. 30.
    Macron L, Lim P, Bensaid A, Nahum J, Dussault C, Mitchell-Heggs L et al (2010) Single-beat versus multibeat real-time 3D echocardiography for assessing left ventricular volumes and ejection fraction: a comparison study with cardiac magnetic resonance. Circ Cardiovasc Imaging 3:450–455PubMedCrossRefGoogle Scholar
  31. 31.
    Yu CM, Bax JJ, Gorcsan J III (2009) Critical appraisal of methods to assess mechanical dyssynchrony. Curr Opin Cardiol 24:18–28PubMedCrossRefGoogle Scholar
  32. 32.
    Agarwal R, Beshai JF, Lang RM (2009) Can real-time three-dimensional echocardiography be used reliably for the assessment of left ventricular dyssynchrony? Arch Cardiovasc Dis 102:469–472PubMedCrossRefGoogle Scholar
  33. 33.
    Jenkins C, Marwick TH (2009) Baseline and follow-up assessment of regional left ventricular volume using 3-Dimensional echocardiography: comparison with cardiac magnetic resonance. Cardiovasc Ultrasound 7:55PubMedCrossRefGoogle Scholar
  34. 34.
    Macron L, Lim P, Bensaid A, Nahum J, Dussault C, Mitchell-Heggs L, Dubois-Randé JL, Deux JF, Gueret P (2010) Single-beat versus multibeat real-time 3D echocardiography for assessing left ventricular volumes and ejection fraction: a comparison study with cardiac magnetic resonance. Circ Cardiovasc Imaging 3:450–455PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2011

Authors and Affiliations

  • Denisa Muraru
    • 1
  • Luigi P. Badano
    • 1
  • Davide Ermacora
    • 1
  • Gianluca Piccoli
    • 2
  • Sabino Iliceto
    • 1
  1. 1.Department of Cardiac, Thoracic and Vascular SciencesUniversity of PaduaPaduaItaly
  2. 2.Department of Radiology“Santa Maria della Misericordia” University HospitalUdineItaly

Personalised recommendations