Frontline diagnostic evaluation of patients suspected of angina by coronary computed tomography reduces downstream resource utilization when compared to conventional ischemia testing

  • Lene H. Nielsen
  • John Markenvard
  • Jesper M. Jensen
  • Hans Mickley
  • Kristian A. Øvrehus
  • Bjarne L. NørgaardEmail author
Original Paper


It has been proposed that the increasing use of coronary computed tomographic angiography (CTA) may introduce additional unnecessary diagnostic procedures. However, no previous study has assessed the impact on downstream test utilization of conventional diagnostic testing relative to CTA in patients suspected of angina. The purpose of this study was to investigate the consequences of frontline exercise-stress testing (Ex-test) versus CTA on downstream test utilization in clinical practice. In two collaborating departments using either Ex-test (n = 247) or CTA (n = 251) as the frontline diagnostic test in patients suspected of angina, comparable cohorts of consecutive patients were retrospectively identified (Jan. 2007–Feb. 2008). Downstream test utilization (invasive coronary angiography, ICA; myocardial perfusion scintigraphy, and CTA) during 12 months after the index diagnostic test was recorded. Mean age was 56 years (51% men), and 96% of the total study cohort were at low-intermediate pretest risk of significant coronary disease. Overall, downstream test utilization was more frequent in the Ex-test group than in the CTA group, 32% versus 21% (P = 0.003). Subsequent myocardial scintigraphy was more frequent used (9% versus 4%, P = 0.03), whereas ICA tended to be more frequent applied in the Ex-test versus CTA group (23% vs. 18%, P = 0.15). A frontline diagnostic use in symptomatic patients of Ex-test in comparison to CTA leads to more downstream diagnostic test utilization. Future prospective trials are needed in order to define the most cost-effective diagnostic use of CTA relative to conventional ischemia testing.


Cardiology practice Computed tomography Coronary artery disease Exercise testing Invasive coronary angiography Myocardial perfusion imaging 


  1. 1.
    Gianrossi R, Detrano R, Mulvihill D, Lehmann K, Dubach P, Colombo A, McArthur D, Froelicher V (1989) Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis. Circulation 80:87–98PubMedCrossRefGoogle Scholar
  2. 2.
    Froelicher VF, Lehmann KG, Thomas R, Goldman S, Morrison D, Edson R, Lavori P, Myers J, Dennis C, Shabetai R, Do D, Froning J (1998) The electrocardiographic exercise test in a population with reduced workup bias: diagnostic performance, computerized interpretation, and multivariable prediction. Veterans affairs cooperative study in health services #016 (QUEXTA) study group. quantitative exercise testing and angiography. Ann Intern Med 128:965–974PubMedGoogle Scholar
  3. 3.
    Fox K, Garcia MA, Ardissino D, Buszman P, Camici PG, Crea F, Daly C, De Backer G, Hjemdahl P, Lopez-Sendon J, Marco J, Morais J, Pepper J, Sechtem U, Simoons M, Thygesen K, Priori SG, Blanc JJ, Budaj A, Camm J, Dean V, Deckers J, Dickstein K, Lekakis J, McGregor K, Metra M, Morais J, Osterspey A, Tamargo J, Zamorano JL (2006) Task force on the management of stable angina pectoris of the European Society of cardiology; ESC Committee for Practice Guidelines (CPG). Guidelines on the management of stable angina pectoris: executive summary: the Task Force on the management of stable angina pectoris of the European Society of cardiology. Eur Heart J 27:1341–1381PubMedCrossRefGoogle Scholar
  4. 4.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coreonary using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557PubMedCrossRefGoogle Scholar
  5. 5.
    Alkadhi H, Scheffel H, Desbiolles L, Gaemperli O, Stolzmann P, Plass A, Goerres GW, Luescher TF, Genoni M, Marincek B, Kaufmann PA, Leschka S (2008) Dual-Source computed tomography coronary angiography: influence of obesity, calcium load, and heart rate on diagnostic accuracy. Eur Heart J 29:766–776PubMedCrossRefGoogle Scholar
  6. 6.
    Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, Nieman K, van Werkhoven JM, Pundziute G, Weustink AC, de Vos AM, Pugliese F, Rensing B, Jukema JW, Bax JJ, Prokop M, Doevendans PA, Hunink MG, Krestin GP, de Feyter PJ (2008) Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol 52:2135–2144PubMedCrossRefGoogle Scholar
  7. 7.
    Hausleiter J, Meyer T, Hadamitzky M, Zankl M, Gerein P, Dörrler K, Kastrati A, Martinoff S, Schömig A (2007) Non-invasive coronary computed tomographic angiography for patients with suspected coronary artery disease: the coronary angiography by computed tomography with the use of a submillimeter resolution (CACTUS) trial. Eur Heart J 28:3034–3041PubMedCrossRefGoogle Scholar
  8. 8.
    Mitka M (2006) CT angiography: clearer picture, fuzzier reception. JAMA 295:1989–1990PubMedCrossRefGoogle Scholar
  9. 9.
    Redberg RF, Walsh J (2008) Pay now, benefits may follow–the case of cardiac computed tomographic angiography. N Engl J Med 359:2309–2310PubMedCrossRefGoogle Scholar
  10. 10.
    Diamond GA, Forrester JS (1979) Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med 300:1350–1358PubMedCrossRefGoogle Scholar
  11. 11.
    Diamond GA (1983) A clinically relevant classification of chest discomfort. J Am Coll Cardiol 1:574–575PubMedCrossRefGoogle Scholar
  12. 12.
    Øvrehus KA, Jensen JK, Mickley HF, Munkholm H, Bøttcher M, Bøtker HE, Nørgaard BL (2010) Comparison of usefulness of exercise testing versus coronary computed tomographic angiography for evaluation of patients suspected of having coronary artery disease. Am J Cardiol 105:773–779PubMedCrossRefGoogle Scholar
  13. 13.
    Johansen A, Høilund-Carlsen PF, Christensen HW, Grupe P, Veje A, Vach W, Haghfelt T (2004) Observer variability in the evaluation of dual-isotope Tl-201/Tc-99m sestamibi rest/stress myocardial perfusion SPECT in men and women with known or suspected stable angina pectoris. J Nucl Cardiol 11:710–718PubMedCrossRefGoogle Scholar
  14. 14.
    Thygesen K, Alpert JS, White HD (2007) Joint ESC/ACCF/AHA/WHF task force for the redefinition of myocardial infarction. Universal definition of myocardial infarction. Eur Heart J 28:2525–2538PubMedCrossRefGoogle Scholar
  15. 15.
    Bongartz G, Golding SJ, Jurik AG, et al. (2004) European guidelines for multislice computed tomography:CT quality criteria, Appendix C. Access date 18 Aug 2009
  16. 16.
    Dewey M, Dübel HP, Schink T, Baumann G, Hamm B (2007) Head-to-head comparison of multislice computed tomography and exercise electrocardiography for diagnosis of coronary artery disease. Eur Heart J 28:2485–2490PubMedCrossRefGoogle Scholar
  17. 17.
    Mollet NR, Cademartiri F, Van Mieghem C, Meijboom B, Pugliese F, Runza G, Baks T, Dikkeboer J, McFadden EP, Freericks MP, Kerker JP, Zoet SK, Boersma E, Krestin GP, de Feyter PJ (2007) Adjunctive value of CT coronary angiography in the diagnostic work-up of patients with typical angina pectoris. Eur Heart J 28:1872–1878PubMedCrossRefGoogle Scholar
  18. 18.
    Karlsberg RP, Budoff MJ, Thomson LE, Friedman JD, Berman DS (2010) Reduction in downstream test utilization following introduction of coronary computed tomography in a cardiology practice. Int J Cardio vasc Imag 3:359–366CrossRefGoogle Scholar
  19. 19.
    Auseon AJ, Advani SS, Bush CA, Raman SV (2009) Impact of 64-slice multidetector computed tomography in other diagnostic studies for coronary artery disease. Am J Med 122:387–391PubMedCrossRefGoogle Scholar
  20. 20.
    Devine PJ, Villines TC, Sullenberger LE, Anderson DR, Malik AK, Feuerstein IM, Taylor AJ (2008) Real-world application of coronary computed tomography angiography and its potential effect on downstream resource utilization in evaluation angina. J Cardio vasc Comput Tomogr 2:214–219CrossRefGoogle Scholar
  21. 21.
    Budoff MJ, Gopal A, Gul KM, Mao SS, Fischer H, Oudiz RJ (2008) Prevalence of obstructive coronary artery disease in an outpatient cardiac CT angiography environment. Int J Cardiol 129:32–36PubMedCrossRefGoogle Scholar
  22. 22.
    Madsen JK, Bech J, Jørgensen E, Kastrup J, Kelbaek H, Saunamäki K (2002) Yields of 5, 536 diagnostic coronary arteriographies: results from a data registry. Cardiology 98:191–194PubMedCrossRefGoogle Scholar
  23. 23.
    Shaw LJ, Hachamovitch R, Berman DS, Marwick TH, Lauer MS, Heller GV, Iskandrian AE, Kesler KL, Travin MI, Lewin HC, Hendel RC, Borges-Neto S, Miller DD (1999) The economic consequences of available diagnostic and prognostic strategies for the evaluation of stable angina patients: an observational assessment of the value of precatheterization ischemia. Economics of Noninvasive Diagnosis (END) Multicenter Study Group. J Am Coll Cardiol 33:661–669PubMedCrossRefGoogle Scholar
  24. 24.
    Tavris DR, Gallauresi BA, Lin B, Rich SE, Shaw RE, Weitraub WS, Brindis RG, Hewit K (2004) Risk of local adverse events following cardiac cathterization by hemostasis device use and genger. J Invasive Cardiol 16:459–464PubMedGoogle Scholar
  25. 25.
    Shaw LJ, Berman DS, Maron DJ, Mancini GB, Hayes SW, Hartigan PM, Weintraub WS, O’Rourke RA, Dada M, Spertus JA, Chaitman BR, Friedman J, Slomka P, Heller GV, Germano G, Gosselin G, Berger P, Kostuk WJ, Schwartz RG, Knudtson M, Veledar E, Bates ER, McCallister B, Teo KK, Boden WE (2008) COURAGE investigators. optimal medical therapy with or without percitaneous coronary intervention to reduce ischemic burden: results from the Clinical Outcome Utilizing Revascularization and Aggressive Drug Evaluation (COURAGE) trial nuclear substudy. Circulation 117:1283–1291PubMedCrossRefGoogle Scholar
  26. 26.
    Hadamitzky M, Freissmuth B, Meyer T, Hein F, Kastrati A, Martinoff S, Schömig A, Hausleiter J (2009) Prognostic value of coronary computed tomographic angiography for prediction of cardiac events in patients with suspected coronary artery disease. JACC Cardiovasc Imaging 2:404–411PubMedCrossRefGoogle Scholar
  27. 27.
    Leischik R, Dworrak B, Littwitz H, Gülker H (2007) Prognostic significance of exercise stress echocardiography in 3,329 out patients (5-year longitudinal study). Int J Cardiol 119:297–305PubMedCrossRefGoogle Scholar
  28. 28.
    Einstein AJ, Moser KW, Thompson RC, Cerqueira MD, Henzlova MJ (2007) Radiation dose to patients from cardiac diagnostic imaging. Circulation 116:1290–1305PubMedCrossRefGoogle Scholar
  29. 29.
    Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323PubMedCrossRefGoogle Scholar
  30. 30.
    Hausleiter J, Meyer T, Hermann F, Hadamitzky M, Krebs M, Gerber TC, McCollough C, Martinoff S, Kastrati A, Schömig A, Achenbach S (2009) Estimated radiation dose associated with cardiac CT angiography. JAMA 301:500–507PubMedCrossRefGoogle Scholar
  31. 31.
    Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S, Wintersperger B, Reiser M, Becker CR, Steinbeck G, Boekstegers P (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46:147–154PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2010

Authors and Affiliations

  • Lene H. Nielsen
    • 1
  • John Markenvard
    • 2
  • Jesper M. Jensen
    • 1
  • Hans Mickley
    • 3
  • Kristian A. Øvrehus
    • 1
  • Bjarne L. Nørgaard
    • 1
    Email author
  1. 1.Department of CardiologyLillebaelt Hospital-VejleVejleDenmark
  2. 2.Division Cardiology, Department of MedicineLillebaelt Hospital-FredericiaFredericiaDenmark
  3. 3.Department Cardiology BOdense University HospitalOdenseDenmark

Personalised recommendations