Assessment of myocardial fibrosis by endoventricular electromechanical mapping in experimental nonischemic cardiomyopathy

  • Peter J. Psaltis
  • Angelo Carbone
  • Darryl P. Leong
  • Dennis H. Lau
  • Adam J. Nelson
  • Tim Kuchel
  • Troy Jantzen
  • Jim Manavis
  • Kerry Williams
  • Prashanthan Sanders
  • Stan Gronthos
  • Andrew C. W. Zannettino
  • Stephen G. WorthleyEmail author
Original Paper


Cardiac fibrosis plays an important prognostic role in nonischemic cardiomyopathy (NICM), making it a potential therapeutic target. Although electromechanical mapping has been used to identify myocardial scar and facilitate intramyocardial intervention in the setting of ischemic heart disease, its application has not been described in NICM. We assessed the detection of myocardial fibrosis by endoventricular electromechanical mapping in an experimental model of NICM. The NOGA® XP system was used to perform left ventricular mapping in twelve sheep that had undergone intracoronary doxorubicin dosing to induce NICM and in six healthy control animals. Results for endocardial voltage and mechanical shortening were evaluated against myocardial fibrosis burden, as determined by delayed-enhancement cardiac magnetic resonance and quantitative histomorphometry. Doxorubicin treatment resulted in dilated cardiomyopathy with moderate-severe impairment of left ventricular ejection fraction. Late gadolinium uptake was present in 9/12 doxorubicin animals, while histological fibrosis was approximately doubled compared to controls and was distributed multisegmentally throughout the left ventricle. Cardiomyopathy was associated with widespread reductions in unipolar and bipolar voltage amplitude and endocardial shortening. Each parameter showed an inverse relationship with the burden of fibrosis. Moreover, unipolar voltage and linear local shortening ratio displayed moderate accuracy for identifying myocardial segments with delayed contrast enhancement or increased fibrosis content, with optimal discriminatory thresholds of 7.5 mV and 11.5%, respectively. In this model of NICM, electromechanical mapping shows potential for delineating segmental differences in fibrosis. Pending clinical evaluation, it may therefore have applicability for directing targeted intramyocardial interventions in nonischemic heart disease.


Animal models Cardiac fibrosis Cardiac remodeling Mapping NOGA Nonischemic cardiomyopathy 



Personal funding was provided by the National Health and Medical Research Council of Australia (PJP, DHL, DPL), National Heart Foundation of Australia (PJP, DPL, PS), Kidney Health Australia (DHL), Royal Adelaide Hospital (PJP) and University of Adelaide (DHL). We thank Dr John Finnie, Adrian Hines, Melissa Gourlay and Jodie Dier (Veterinary Services Division, IMVS), Sofie Kogoj (Hanson Institute Centre for Neurological Diseases) and Dr. Michael Worthington (Department of Cardiothoracic Surgery, RAH) for their assistance during this study.


Dr. Jantzen is an employee of Biosense Webster, Johnson & Johnson Medical Pty Ltd, Australia.

Supplementary material

10554_2010_9657_MOESM1_ESM.doc (47 kb)
(DOC 47 kb)
10554_2010_9657_MOESM2_ESM.tif (884 kb)
(TIFF 883 kb)
10554_2010_9657_MOESM3_ESM.tif (2 mb)
(TIFF 2045 kb)


  1. 1.
    Felker GM, Thompson RE, Hare JM et al (2000) Underlying causes and long-term survival in patients with initially unexplained cardiomyopathy. N Engl J Med 342:1077–1084CrossRefPubMedGoogle Scholar
  2. 2.
    Assomull RG, Prasad SK, Lyne J et al (2006) Cardiovascular magnetic resonance, fibrosis, and prognosis in dilated cardiomyopathy. J Am Coll Cardiol 48:1977–1985CrossRefPubMedGoogle Scholar
  3. 3.
    Wu KC, Weiss RG, Thiemann DR et al (2008) Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in nonischemic cardiomyopathy. J Am Coll Cardiol 51:2414–2421CrossRefPubMedGoogle Scholar
  4. 4.
    Psaltis PJ, Gronthos S, Worthley SG, Zannettino ACW (2008) Cellular therapy for cardiovascular disease part 2—delivery of cells and clinical experience. Clin Med Cardiol 2:139–151Google Scholar
  5. 5.
    Seth S, Narang R, Bhargava B et al (2006) Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy: clinical and histopathological results: the first-in-man ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) trial. J Am Coll Cardiol 48:2350–2351CrossRefPubMedGoogle Scholar
  6. 6.
    Fischer-Rasokat U, Assmus B, Seeger FH et al (2009) A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circ Heart Fail 2:417–423CrossRefPubMedGoogle Scholar
  7. 7.
    Freyman T, Polin G, Osman H et al (2006) A quantitative, randomized study evaluating three methods of mesenchymal stem cell delivery following myocardial infarction. Eur Heart J 27:1114–1122CrossRefPubMedGoogle Scholar
  8. 8.
    Perin EC, Silva GV, Assad JA et al (2008) Comparison of intracoronary and transendocardial delivery of allogeneic mesenchymal cells in a canine model of acute myocardial infarction. J Mol Cell Cardiol 44:486–495CrossRefPubMedGoogle Scholar
  9. 9.
    Theiss HD, David R, Engelmann MG et al (2007) Circulation of CD34+ progenitor cell populations in patients with idiopathic dilated and ischaemic cardiomyopathy (DCM and ICM). Eur Heart J 28:1258–1264CrossRefPubMedGoogle Scholar
  10. 10.
    Maehashi N, Yokota Y, Takarada A et al (1991) The role of myocarditis and myocardial fibrosis in dilated cardiomyopathy. Analysis of 28 necropsy cases. Jpn Heart J 32:1–15PubMedGoogle Scholar
  11. 11.
    Suma H, Horii T, Isomura T, Buckberg G (2006) A new concept of ventricular restoration for nonischemic dilated cardiomyopathy. Eur J Cardiothorac Surg 29(Suppl 1):S207–S212CrossRefPubMedGoogle Scholar
  12. 12.
    Psaltis PJ, Worthley SG (2009) Endoventricular electromechanical mapping—the diagnostic and therapeutic utility of the NOGA® XP Cardiac Navigation System. J Cardiovasc Transl Res 2:48–62CrossRefPubMedGoogle Scholar
  13. 13.
    Kornowski R, Hong MK, Gepstein L et al (1998) Preliminary animal and clinical experiences using an electromechanical endocardial mapping procedure to distinguish infarcted from healthy myocardium. Circulation 98:1116–1124PubMedGoogle Scholar
  14. 14.
    Botker HE, Lassen JF, Hermansen F et al (2001) Electromechanical mapping for detection of myocardial viability in patients with ischemic cardiomyopathy. Circulation 103:1631–1637PubMedGoogle Scholar
  15. 15.
    Losordo DW, Vale PR, Hendel RC et al (2002) Phase 1/2 placebo-controlled, double-blind, dose-escalating trial of myocardial vascular endothelial growth factor 2 gene transfer by catheter delivery in patients with chronic myocardial ischemia. Circulation 105:2012–2018CrossRefPubMedGoogle Scholar
  16. 16.
    Perin EC, Dohmann HF, Borojevic R et al (2004) Improved exercise capacity and ischemia 6 and 12 months after transendocardial injection of autologous bone marrow mononuclear cells for ischemic cardiomyopathy. Circulation 110:II213–II218CrossRefPubMedGoogle Scholar
  17. 17.
    Psaltis PJ, Carbone A, Nelson A et al (2008) An ovine model of toxic, nonischemic cardiomyopathy—assessment by cardiac magnetic resonance imaging. J Card Fail 14:785–795CrossRefPubMedGoogle Scholar
  18. 18.
    Gepstein L, Goldin A, Lessick J et al (1998) Electromechanical characterization of chronic myocardial infarction in the canine coronary occlusion model. Circulation 98:2055–2064PubMedGoogle Scholar
  19. 19.
    Keck A, Hertting K, Schwartz Y et al (2002) Electromechanical mapping for determination of myocardial contractility and viability. A comparison with echocardiography, myocardial single-photon emission computed tomography, and positron emission tomography. J Am Coll Cardiol 40:1067–1074CrossRefPubMedGoogle Scholar
  20. 20.
    Hsia HH, Callans DJ, Marchlinski FE (2003) Characterization of endocardial electrophysiological substrate in patients with nonischemic cardiomyopathy and monomorphic ventricular tachycardia. Circulation 108:704–710CrossRefPubMedGoogle Scholar
  21. 21.
    McCrohon JA, Moon JC, Prasad SK et al (2003) Differentiation of heart failure related to dilated cardiomyopathy and coronary artery disease using gadolinium-enhanced cardiovascular magnetic resonance. Circulation 108:54–59CrossRefPubMedGoogle Scholar
  22. 22.
    Iles L, Pfluger H, Phrommintikul A et al (2008) Evaluation of diffuse myocardial fibrosis in heart failure with cardiac magnetic resonance contrast-enhanced T1 mapping. J Am Coll Cardiol 52:1574–1580CrossRefPubMedGoogle Scholar
  23. 23.
    Bello D, Shah DJ, Farah GM et al (2003) Gadolinium cardiovascular magnetic resonance predicts reversible myocardial dysfunction and remodeling in patients with heart failure undergoing beta-blocker therapy. Circulation 108:1945–1953CrossRefPubMedGoogle Scholar
  24. 24.
    Nazarian S, Bluemke DA, Lardo AC et al (2005) Magnetic resonance assessment of the substrate for inducible ventricular tachycardia in nonischemic cardiomyopathy. Circulation 112:2821–2825CrossRefPubMedGoogle Scholar
  25. 25.
    Roberts WC, Siegel RJ, McManus BM (1987) Idiopathic dilated cardiomyopathy: analysis of 152 necropsy patients. Am J Cardiol 60:1340–1355CrossRefPubMedGoogle Scholar
  26. 26.
    Waller TA, Hiser WL, Capehart JE, Roberts WC (1998) Comparison of clinical and morphologic cardiac findings in patients having cardiac transplantation for ischemic cardiomyopathy, idiopathic dilated cardiomyopathy, and dilated hypertrophic cardiomyopathy. Am J Cardiol 81:884–894CrossRefPubMedGoogle Scholar
  27. 27.
    de Leeuw N, Ruiter DJ, Balk AH, de Jonge N, Melchers WJ, Galama JM (2001) Histopathologic findings in explanted heart tissue from patients with end-stage idiopathic dilated cardiomyopathy. Transpl Int 14:299–306CrossRefPubMedGoogle Scholar
  28. 28.
    Fuchs S, Hendel RC, Baim DS et al (2001) Comparison of endocardial electromechanical mapping with radionuclide perfusion imaging to assess myocardial viability and severity of myocardial ischemia in angina pectoris. Am J Cardiol 87:874–880CrossRefPubMedGoogle Scholar
  29. 29.
    Poppas A, Sheehan FH, Reisman M, Harms V, Kornowski R (2004) Validation of viability assessment by electromechanical mapping by three-dimensional reconstruction with dobutamine stress echocardiography in patients with coronary artery disease. Am J Cardiol 93:1097–1101CrossRefPubMedGoogle Scholar
  30. 30.
    Wolf T, Gepstein L, Dror U et al (2001) Detailed endocardial mapping accurately predicts the transmural extent of myocardial infarction. J Am Coll Cardiol 37:1590–1597CrossRefPubMedGoogle Scholar
  31. 31.
    Fallavollita JA, Valeti U, Oza S, Canty JM Jr (2004) Spatial heterogeneity of endocardial voltage amplitude in viable, chronically dysfunctional myocardium. Basic Res Cardiol 99:212–222CrossRefPubMedGoogle Scholar
  32. 32.
    Lessick J, Smeets JL, Reisner SA, Ben-Haim SA (2000) Electromechanical mapping of regional left ventricular function in humans: comparison with echocardiography. Catheter Cardiovasc Interv 50:10–18CrossRefPubMedGoogle Scholar
  33. 33.
    El Chemaly A, Guinamard R, Demion M et al (2006) A voltage-activated proton current in human cardiac fibroblasts. Biochem Biophys Res Commun 340:512–516CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2010

Authors and Affiliations

  • Peter J. Psaltis
    • 1
    • 2
  • Angelo Carbone
    • 1
  • Darryl P. Leong
    • 1
  • Dennis H. Lau
    • 1
  • Adam J. Nelson
    • 1
  • Tim Kuchel
    • 3
  • Troy Jantzen
    • 4
  • Jim Manavis
    • 5
  • Kerry Williams
    • 1
  • Prashanthan Sanders
    • 1
  • Stan Gronthos
    • 2
  • Andrew C. W. Zannettino
    • 2
  • Stephen G. Worthley
    • 1
    Email author
  1. 1.Cardiovascular Research Centre, Royal Adelaide Hospital and Departments of Medicine and PhysiologyUniversity of AdelaideAdelaideAustralia
  2. 2.Bone and Cancer Laboratories, Division of Haematology, Institute of Medical and Veterinary Science & Centre for Stem Cell ResearchUniversity of AdelaideAdelaideAustralia
  3. 3.Veterinary Services DivisionInstitute of Medical and Veterinary ScienceAdelaideAustralia
  4. 4.Biosense-Webster, Johnson & Johnson Medical Pty LtdNorth RydeAustralia
  5. 5.Hanson Institute Centre for Neurological DiseasesInstitute of Medical and Veterinary ScienceAdelaideAustralia

Personalised recommendations