Prediction of coronary artery plaque progression and potential rupture from 320-detector row prospectively ECG-gated single heart beat CT angiography: Lattice Boltzmann evaluation of endothelial shear stress

  • Frank J. Rybicki
  • Simone Melchionna
  • Dimitris Mitsouras
  • Ahmet U. Coskun
  • Amanda G. Whitmore
  • Michael Steigner
  • Leelakrishna Nallamshetty
  • Fredrick G. Welt
  • Massimo Bernaschi
  • Michelle Borkin
  • Joy Sircar
  • Efthimios Kaxiras
  • Sauro Succi
  • Peter H. Stone
  • Charles L. Feldman
Original Paper

Abstract

Advances in MDCT will extend coronary CTA beyond the morphology data provided by systems that use 64 or fewer detector rows. Newer coronary CTA technology such as prospective ECG-gating will also enable lower dose examinations. Since the current standard of care for coronary diagnoses is catheterization, CT will continue to be benchmarked against catheterization reference points, in particular temporal resolution, spatial resolution, radiation dose, and volume coverage. This article focuses on single heart beat cardiac acquisitions enabled by 320-detector row CT. Imaging with this system can now be performed with patient radiation doses comparable to catheterization. The high image quality, excellent contrast opacification, and absence of stair-step artifact provide the potential to evaluate endothelial shear stress (ESS) noninvasively with CT. Low ESS is known to lead to the development and progression of atherosclerotic plaque culminating in high-risk vulnerable plaque likely to rupture and cause an acute coronary event. The magnitude of local low ESS, in combination with the local remodeling response and the severity of systemic risk factors, determines the natural history of each plaque. This paper describes the steps required to derive an ESS map from 320-detector row CT data using the Lattice Boltzmann method to include the complex geometry of the coronary arterial tree. This approach diminishes the limitations of other computational fluid dynamics methods to properly evaluate multiple coronary arteries, including the complex geometry of coronary bifurcations where lesions tend to develop.

Keywords

Computed tomography Shear stress Atherosclerosis Coronary disease Vascular remodeling 

References

  1. 1.
    Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. JAMA 282:2035–2042. doi:10.1001/jama.282.21.2035 PubMedCrossRefGoogle Scholar
  2. 2.
    Asakura T, Karino T (1990) Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66:1045–1066PubMedGoogle Scholar
  3. 3.
    Chatzizisis YS, Coskun AU, Jonas M et al (2007) Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: molecular, cellular, and vascular behavior. J Am Coll Cardiol 49:2379–2393. doi:10.1016/j.jacc.2007.02.059 PubMedCrossRefGoogle Scholar
  4. 4.
    Chatzizisis YS, Jonas M, Coskun AU et al (2008) Prediction of the localization of high-risk coronary atherosclerotic plaques on the basis of low endothelial shear stress: an intravascular ultrasound and histopathology natural history study. Circulation 117:993–1002. doi:10.1161/CIRCULATIONAHA.107.695254 PubMedCrossRefGoogle Scholar
  5. 5.
    Galis ZS, Sukhova GK, Lark MW et al (1994) Increased expression of matrix metalloproteinases and matrix degrading activity in vulnerable regions of human atherosclerotic plaques. J Clin Invest 94:2493–2503. doi:10.1172/JCI117619 PubMedCrossRefGoogle Scholar
  6. 6.
    Galis ZS, Khatri JJ (2002) Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 90:251–262PubMedGoogle Scholar
  7. 7.
    Feldman CL, Coskun AU, Yeghiazarians Y et al (2006) Remodeling characteristics of minimally diseased coronary arteries are consistent along the length of the artery. Am J Cardiol 97:13–16. doi:10.1016/j.amjcard.2005.07.121 PubMedCrossRefGoogle Scholar
  8. 8.
    Nakamura M, Nishikawa H, Mukai S et al (2001) Impact of coronary artery remodeling on clinical presentation of coronary artery disease: an intravascular ultrasound study. J Am Coll Cardiol 37:63–69. doi:10.1016/S0735-1097(00)01097-4 PubMedCrossRefGoogle Scholar
  9. 9.
    Glagov S, Weisenberg E, Zarins CK et al (1987) Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 316:1371–1375PubMedGoogle Scholar
  10. 10.
    Schoenhagen P, Ziada KM, Kapadia SR et al (2000) Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 101:598–603PubMedGoogle Scholar
  11. 11.
    Coskun AU, Yeghiazarians Y, Kinlay S et al (2003) Reproducibility of coronary lumen, plaque, and vessel wall reconstruction and of endothelial shear stress measurements in vivo in humans. Catheter Cardiovasc Interv 60:67–78. doi:10.1002/ccd.10594 PubMedCrossRefGoogle Scholar
  12. 12.
    Stone PH, Coskun AU, Kinlay S et al (2003) Effect of endothelial shear stress on the progression of coronary artery disease, vascular remodeling, and in-stent restenosis in humans: in vivo 6 months follow-up study. Circulation 108:438–444. doi:10.1161/01.CIR.0000080882.35274.AD PubMedCrossRefGoogle Scholar
  13. 13.
    Stone PH, Coskun AU, Kinlay S et al (2007) Regions of low endothelial shear stress are the sites where coronary plaque progresses and vascular remodelling occurs in humans: an in vivo serial study. Eur Heart J 28:705–710. doi:10.1093/eurheartj/ehl575 PubMedCrossRefGoogle Scholar
  14. 14.
    Steigner ML, Otero HJ, Cai T et al (2009) Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging 25:85–90. doi:10.1007/s10554-008-9347-8 PubMedCrossRefGoogle Scholar
  15. 15.
    Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546. doi:10.1007/s10554-008-9308-2 PubMedCrossRefGoogle Scholar
  16. 16.
    Succi S (2001) The Lattice Boltzmann equation. The Oxford University Press, OxfordGoogle Scholar
  17. 17.
    Bernaschi M, Fatica M, Melchionna S et al (2008) A flexible high-performance Lattice Boltzmann GPU code for the simulations of fluid flows in complex geometries. Comput Phys Commun (submitted)Google Scholar
  18. 18.
    Stone PH, Coskun AU, Yeghiazarians Y et al (2003) Prediction of sites of coronary atherosclerosis progression: In vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr Opin Cardiol 18:458–470. doi:10.1097/00001573-200311000-00007 PubMedCrossRefGoogle Scholar
  19. 19.
    Miller JM, Rochitte CE, Dewey M et al (2007) Late-breaking clinical trial abstracts from the American Heart Association’s Scientific Sessions. Circulation 116:2630Google Scholar
  20. 20.
    Min J, Jollis J, Dowe D et al (2007) Assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography: results from the multicenter ACCURACY Trial (abstract SSE26-04). In: 94th scientific assembly and annual meeting of the radiological society of North America. Chicago, Il: 2007Google Scholar

Copyright information

© Springer Science+Business Media, B.V. 2009

Authors and Affiliations

  • Frank J. Rybicki
    • 1
    • 2
  • Simone Melchionna
    • 3
    • 4
    • 5
    • 6
  • Dimitris Mitsouras
    • 1
  • Ahmet U. Coskun
    • 7
    • 8
  • Amanda G. Whitmore
    • 1
  • Michael Steigner
    • 1
    • 2
  • Leelakrishna Nallamshetty
    • 1
    • 2
  • Fredrick G. Welt
    • 7
  • Massimo Bernaschi
    • 9
  • Michelle Borkin
    • 3
    • 4
  • Joy Sircar
    • 4
  • Efthimios Kaxiras
    • 4
  • Sauro Succi
    • 9
    • 10
  • Peter H. Stone
    • 7
  • Charles L. Feldman
    • 7
  1. 1.Applied Imaging Science Laboratory, Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  2. 2.Noninvasive Cardiovascular Imaging, Department of RadiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  3. 3.Department of PhysicsHarvard UniversityCambridgeUSA
  4. 4.School of Engineering and Applied ScienceHarvard UniversityCambridgeUSA
  5. 5.Department of PhysicsUniversity of Rome La SapienzaRomeItaly
  6. 6.INFM-CNRRomeItaly
  7. 7.Cardiovascular Division, Department of MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  8. 8.Mechanical and Industrial EngineeringNortheastern UniversityBostonUSA
  9. 9.Istituto Applicazioni CalcoloCNRRomeItaly
  10. 10.Initiative in Innovative ComputingHarvard UniversityCambridgeUSA

Personalised recommendations