Advertisement

A modified rabbit model of reperfused myocardial infarction for cardiac MR imaging research

  • Yuanbo Feng
  • Yi Xie
  • Huaijun Wang
  • Feng Chen
  • Yuxiang Ye
  • Lixin Jin
  • Guy Marchal
  • Yicheng Ni
Original Paper

Abstract

We sought to obtain a rabbit myocardial infarction (MI) model for research with cardiac magnetic resonance imaging (cMRI) by overcoming a few technical difficulties. A novel endotracheal method was developed for intubation and ventilation. Fourteen rabbits were divided into group-1 (= 8) with open-chest occlusion of left circumflex coronary artery and closed-chest reperfusion, and group-2 (n = 6) of non-ischemic control; and received ECG-triggered cMRI with delayed contrast enhancement (DE-cMRI) at a 1.5 T clinical scanner. The MI areas in group-1 were morphometrically compared between DE-cMRI and histochemically stained specimens. Left ventricular (LV) functions were compared between two groups.The success rate of intubation and reperfused MI was 8/8 and 6/8, respectively. Global and regional LV functions significantly decreased in group-1 as evidenced by significant hypokinesis of lateral LV-wall and wall thickening (< 0.001). Mean MI-area was 19.41 ± 21.92% on DE-cMRI and 19.10 ± 22.61% with histochemical staining (r = 0.985). Global MI-volume was 17.92 ± 7.42% on DE-cMRI and 16.62 ± 7.16% with histochemistry (r = 0.994). The usefulness of this model was successfully tested for assessing a new contrast agent. The present rabbit MI model may offer a practical platform for more translational research using clinical MRI-facilities.

Keywords

ECG Modified model MRI Myocardial infarction Rabbit Reperfusion 

Notes

Acknowledgments

We are grateful to Shanghai Chemrole Co., Ltd, China for providing batches of nonporphyrin NACAs in our in vivo testing and to RF Therapeutics Inc., Canada for chemical refinement of NACAs. This study is jointly supported by the research funds of OT/96/33 and OT/06/70 from K. U. Leuven, Belgium; FWO G.0247.05, FWO G.0257.05 and FWO major financing (ZWAP/05/018) from Flemish government of Belgium; and a EU project Asia-Link CfP 2006-EuropeAid/123738/C/ACT/Multi-Proposal No. 128-498/111.

References

  1. 1.
    Amado LC, Gerber BL, Gupta SN et al (2004) Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 44(12):2383–2389. doi: 10.1016/j.jacc.2004.09.020 PubMedCrossRefGoogle Scholar
  2. 2.
    Storey P, Chen Q, Li W et al (2006) Magnetic resonance imaging of myocardial infarction using a manganese-based contrast agent (EVP 1001-1): preliminary results in a dog model. J Magn Reson Imaging 23(2):228–234. doi: 10.1002/jmri.20500 PubMedCrossRefGoogle Scholar
  3. 3.
    Zhou XH, Li LD, Wu LM et al (2007) A minimally invasive model of myocardial infarction made by video-assisted thoracoscopic surgery. Methods Find Exp Clin Pharmacol 29(4):283–290. doi: 10.1358/mf.2007.29.4.1075359 PubMedCrossRefGoogle Scholar
  4. 4.
    Hoit BD (2001) New approaches to phenotypic analysis in adult mice. J Mol Cell Cardiol 33:27–35. doi: 10.1006/jmcc.2000.1294 PubMedCrossRefGoogle Scholar
  5. 5.
    Saeed M, Bremerich J, Wendland MF et al (1999) Reperfused myocardial infarction as seen with use of necrosis-specific versus standard extracellular MR contrast media in rats. Radiology 213:247–257PubMedGoogle Scholar
  6. 6.
    Vallee JP, Ivancevic MK, Nguyen D, Morel DR, Jaconi M (2004) Current status of cardiac MRI in small animals. MAGMA 17:149–156. doi: 10.1007/s10334-004-0066-4 PubMedCrossRefGoogle Scholar
  7. 7.
    Marcu CB, Beek AM, van Rossum AC (2006) Clinical applications of cardiaovascular magnetic resonance imaging. CMAJ 175(8):911–917. doi: 10.1503/cmaj.060566 PubMedGoogle Scholar
  8. 8.
    Yang Z, Berr SS, Gilson WD, Toufektsian M-C, French BA (2004) Simultaneous evaluation of infarct size and cardiac function in intact mice by contrast-enhanced cardiac magnetic resonance imaging reveals contractile dysfunction in noninfarcted regions early after myocardial infarction. Circulation 109:1161–1167. doi: 10.1161/01.CIR.0000118495.88442.32 PubMedCrossRefGoogle Scholar
  9. 9.
    Oshinski JN, Yang Z, Jones JR, Mata JF, French BA (2001) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging. Circulation 104:2838–2842. doi: 10.1161/hc4801.100351 PubMedCrossRefGoogle Scholar
  10. 10.
    Judd RM, Kim RJ, Oshinski JN et al (2002) Imaging time after Gd-DTPA injection is critical in using delayed enhancement to determine infarct size accurately with magnetic resonance imaging response. Circulation 106:6e. doi: 10.1161/01.CIR.0000019903.37922.9C CrossRefGoogle Scholar
  11. 11.
    Bremerich J, Saeed M, Arheden H, Higgins CB, Wendland MF (2000 ) Normal and infarcted myocardium: differentiation with cellular uptake of manganese at MR imaging in a rat model. Radiology 216:524–530PubMedGoogle Scholar
  12. 12.
    Wyttenbach R, Saeed M, Wendland MF et al (1999) Detection of acute myocardial ischemia using first-pass dynamics of MnDPDP on inversion recovery echoplanar imaging. J Magn Reson Imaging 9:209–214. doi:10.1002/(SICI)1522-2586(199902)9:2<209::AID-JMRI9>3.0.CO;2-EPubMedCrossRefGoogle Scholar
  13. 13.
    Fujita M, Morimoto Y, Ishihara M et al (2004) A new rabbit model of myocardial infarction without endotracheal intubation. J Surg Res 116:124–128. doi: 10.1016/S0022-4804(03)00304-4 PubMedCrossRefGoogle Scholar
  14. 14.
    Alexander DJ (1980) A simple method of oral endotracheal intubation in rabbits. Lab Anim Sci 30:871–873PubMedGoogle Scholar
  15. 15.
    Kruger J, Zeller W, Schottmann E (1994) A simplified procedure for endotracheal intubation in rabbits. Lab Anim 28:176–177. doi: 10.1258/002367794780745281 PubMedCrossRefGoogle Scholar
  16. 16.
    Davies A, Dallak M, Moores C (1996) Oral endotracheal intubation of rabbits (Oryctolagus cuniiculus). Lab Anim 20:182–183. doi: 10.1258/002367796780865772 CrossRefGoogle Scholar
  17. 17.
    Ni Y (2008) Metalloporphyrins and functional analogues as mri contrast agents. Curr Med Imaging Rev 4:96–112. doi: 10.2174/157340508784356789 CrossRefGoogle Scholar
  18. 18.
    Marchal G, Ni Y, Herijgers P, Flameng W, Petré C, Bosmans H, Yu J, Ebert W, Hilger CS, Pfefferer D, Semmler W, Baert AL (1996) Paramagnetic metalloporphyrins: infarct avid contrast agents for diagnosis of acute myocardial infarction by magnetic resonance imaging. Eur Radiol 6:1–8. doi: 10.1007/BF00619942 CrossRefGoogle Scholar
  19. 19.
    Pislaru SV, Ni Y, Pislaru C, Bosmans H, Miao Y, Bogaert J, Dymarkowski S, Semmler W, Marchal G, Van de Werf FJ (1999) Noninvasive measurements of infarct size after thrombolysis with a necrosis-avid MRI contrast agent. Circulation 99(5):690–696PubMedGoogle Scholar
  20. 20.
    Dymarkowski S, Ni Y, Miao Y, Bogaert J, Rademakers FE, Bosmans H, Speck U, Semmler W, Marchal G (2002) Value of T2-weighted MRI early after myocardial infarction in dogs: comparison with bis-gadolinium-mesoporphyrin enhanced T1-weighted MRI and functional data from cine MRI. Invest Radiol 37:77–85. doi: 10.1097/00004424-200202000-00005 PubMedCrossRefGoogle Scholar
  21. 21.
    Ni Y, Pislaru C, Bosmans H, Pislaru S, Miao Y, Bogaert J, Dymarkowski S, Yu J, Semmler W, Van de Werf F, Baert AL, Marchal G (2001) Intracoronary delivery of Gd-DTPA and Gadophrin-2 for determination of myocardial viability with MR imaging. Eur Radiol 11:876–883. doi: 10.1007/s003300000791 PubMedCrossRefGoogle Scholar
  22. 22.
    Jin JY, Teng GJ, Feng Y et al (2007) Magnetic resonance imaging of acute reperfused myocardial infarction: intraindividual comparison of ECIII-60 and Gd-DTPA in a swine model. Card Inter Radiol 30:248–256. doi: 10.1007/s00270-006-0004-0 CrossRefGoogle Scholar
  23. 23.
    Ni YC, Bormans G, Chen F, Verbruggen A, Marchal G (2005) Necrosis Avid Contrast Agents functional similarity versus structural diversity. Invest Radiol 40:526–535. doi: 10.1097/01.rli.0000171811.48991.5a PubMedCrossRefGoogle Scholar
  24. 24.
    Fonge H, Vunckx K, Wang H et al (2008) Noninvasive detection and quantification of acute myocardial infarction in rabbits using mono-[123I] iodohypericin μSPECT. Eur Heart J 29:260–269. doi: 10.1093/eurheartj/ehm588 PubMedCrossRefGoogle Scholar
  25. 25.
    Zvara DA, Galaska HJ, Castellano VP et al (1997) Cloricromene reduces myocardial infarct size in rabbits when administered during the early reperfusion period. Anesth Analg 84:266–270. doi: 10.1097/00000539-199702000-00006 PubMedCrossRefGoogle Scholar
  26. 26.
    Rudin M, Allegrini PR, Beckmann N, Ekatodramis D, Laurent D (2000) In vivo cardiac studies in animals using magnetic resonance techniques: experimental aspects and MR readouts. MAGMA 11:33–35. doi: 10.1007/BF02678487 PubMedCrossRefGoogle Scholar
  27. 27.
    Cassidy PJ, Schneider JE, Grieve SM, Lygate C, Neubauer S, Clarke K (2004) Assessment of motion gating strategies for mouse magnetic resonance at high magnetic fields. J Magn Reson Imaging 19:229–237. doi: 10.1002/jmri.10454 PubMedCrossRefGoogle Scholar
  28. 28.
    Schneider JE, Cassidy PJ, Lygate C et al (2003) Fast, high-resolution in vivo cine magnetic resonance imaging in normal and failing mouse hearts on a vertical 11.7T system. J Magn Reson Imaging 18:691–701. doi: 10.1002/jmri.10411 PubMedCrossRefGoogle Scholar
  29. 29.
    Szigligeti P, Pankucsi C, Banyasz T, Varro A, Nanasi PP (1996) Action potential duration and force-frequency relationship in isolated rabbit, guinea pig and rat cardiac muscle. J Comp Physiol 166:150–155Google Scholar
  30. 30.
    Van Bilsen M, Chien KR (1993) Growth and hypertrophy of the heart: towards an understanding of cardiac specific and inducible gene expression. Cardiovasc Res 27:1140–1149. doi: 10.1093/cvr/27.7.1140 PubMedCrossRefGoogle Scholar
  31. 31.
    Mahaffey KW, Raya TE, Pennock GD, Morkin E, Goldman S (1995) Left ventricular performance and remodeling in rabbits after myocardial infarction. Effects of a thyroid hormone analogue. Circulation 91:794–801PubMedGoogle Scholar
  32. 32.
    Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–200. doi: 10.1038/415198a PubMedCrossRefGoogle Scholar
  33. 33.
    Choi SH, Lee SS, Choi SII et al (2001) Occlusive myocardial infarction: investigation of bis-Gadolinium mesoporphyrins-enhanced T1-weighted MR imaging in a cat model. Radiology 220:436–440PubMedGoogle Scholar
  34. 34.
    Shiomi M, Ito T, Yamada S, Kawashima S, Fan J (2003) Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit). Arterioscler Thromb Vasc Biol 23(7):1239–1244. doi: 10.1161/01.ATV.0000075947.28567.50 PubMedCrossRefGoogle Scholar
  35. 35.
    Barkhausen J, Ebert W, Debatin JF, Weinmann H-J (2002) Imaging of myocardial infarction: comparison of magnevist and gadophrin-3 in rabbits. J Am Coll Cardiol 39:1392–1398. doi: 10.1016/S0735-1097(02)01777-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2008

Authors and Affiliations

  • Yuanbo Feng
    • 1
  • Yi Xie
    • 2
  • Huaijun Wang
    • 1
  • Feng Chen
    • 1
  • Yuxiang Ye
    • 1
  • Lixin Jin
    • 1
  • Guy Marchal
    • 1
  • Yicheng Ni
    • 1
  1. 1.Department of RadiologyUniversity Hospitals, Catholic University of LeuvenLeuvenBelgium
  2. 2.Faculty of EngineeringUniversity of LeuvenLeuvenBelgium

Personalised recommendations