Advertisement

Prospectively gated low-dose CCTA: 24 months experience in more than 2,000 clinical cases

  • James P. Earls
  • Elizabeth C. Schrack
Original Paper

Abstract

Cardiac CT exams have recently come under increased scrutiny because of their relatively high radiation dose. The most effective way to lower the dose of coronary computed tomography angiography (CCTA) exams is with the use of prospective gating. This allows for a significant reduction in effective radiation dose when compared to retrospective ECG gating while image quality is maintained or improved. We reviewed data from 2,124 consecutive cardiac CT exams, including 1,978 CCTA’s and 146 CCTA’s post CABG. With effective heart rate control, prospective gating was used for 92.1% of the CCTAs and 83.2% of CCTAs following CABG. The prospectively gated CCTAs had a mean effective dose of 3.1 ± 1.5 mSv, CCTAs following CABG had a mean dose of 6.4 ± 2.3 mSv. We review our experience using prospective gating in specific areas to include patient selection, patient preparation, use of β- and calcium-channel-blockers for heart rate control, selection of gating technique and scan parameters, radiation dose, and post-processing techniques.

Keywords

Cardiac Coronary MDCT Prospective gating Radiation dose 

References

  1. 1.
    Hsieh J, Londt J, Vass M, Li J, Tang X, Okerlund D (2006) Step-and-shoot data acquisition and reconstruction for cardiac X-ray computed tomography. Med Phys 33:4236–4248. doi: 10.1118/1.2361078 PubMedCrossRefGoogle Scholar
  2. 2.
    Earls J, Urban B, Berman E, Curry C, Lane J (2006) Jennings R prospectively gated coronary CT angiography: a comparison with helical CT angiography. Presented at the 2006 Radiological Society of North America (RSNA) annual meeting. ChicagoGoogle Scholar
  3. 3.
    Earls JP, Berman EL, Urban BA et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246:742–753. doi: 10.1148/radiol.2463070989 PubMedCrossRefGoogle Scholar
  4. 4.
    Husmann L, Valenta I, Gaemperli O et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29:191–197. doi: 10.1093/eurheartj/ehm613 PubMedCrossRefGoogle Scholar
  5. 5.
    Shuman WP, Branch KR, May JM et al (2008) Prospective versus retrospective ECG gating for 64-detector CT of the coronary arteries: comparison of image quality and patient radiation dose. Radiology 248:431–437. doi: 10.1148/radiol.2482072192 PubMedCrossRefGoogle Scholar
  6. 6.
    Hirai N, Horiguchi J, Fujioka C et al (2008) Prospective versus retrospective ECG-gated 64-detector coronary CT angiography: assessment of image quality, stenosis, and radiation dose. Radiology 248:424–430PubMedCrossRefGoogle Scholar
  7. 7.
    Gutstein A, Wolak A, Lee C et al (2008) Predicting success of prospective and retrospective gating with dual-source coronary computed tomography angiography: development of selection criteria and initial experience. J Cardiovasc Comput Tomogr 2:81–90PubMedCrossRefGoogle Scholar
  8. 8.
    Steigner ML, Otero HJ, Cai T et al (2008) Narrowing the phase window width in prospectively ECG-gated single heart beat 320-detector row coronary CT angiography. Int J Cardiovasc Imaging. July 29 [Epub ahead of print]Google Scholar
  9. 9.
    Rybicki FJ, Otero HJ, Steigner ML et al (2008) Initial evaluation of coronary images from 320-detector row computed tomography. Int J Cardiovasc Imaging 24:535–546. doi: 10.1007/s10554-008-9308-2 PubMedCrossRefGoogle Scholar
  10. 10.
    Scheffel H, Alkadhi H, Leschka S et al (2008) Low-dose CT coronary angiography in the step-and-shoot mode: diagnostic performance. Heart 94:1132–1137. doi: 10.1136/hrt.2008.149971 PubMedCrossRefGoogle Scholar
  11. 11.
    Stolzmann P, Leschka S, Scheffel H et al (2008) Dual-source CT in step-and-shoot mode: noninvasive coronary angiography with low radiation dose. Radiology 249:71–80PubMedCrossRefGoogle Scholar
  12. 12.
    Leschka S, Alkadhi H, Plass A et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26:1482–1487. doi: 10.1093/eurheartj/ehi261 PubMedCrossRefGoogle Scholar
  13. 13.
    Pugliese F, Mollet NR, Runza G et al (2005) Diagnostic accuracy of non-invasive 64-slice CT coronary angiography in patients with stable angina pectoris. Eur Radiol 16:1–8Google Scholar
  14. 14.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46:552–557. doi: 10.1016/j.jacc.2005.05.056 PubMedCrossRefGoogle Scholar
  15. 15.
    Ropers D, Pohle FK, Kuettner A et al (2006) Diagnostic accuracy of noninvasive coronary angiography in patients after bypass surgery using 64-slice spiral computed tomography with 330-ms gantry rotation. Circulation 114:2334–2341. doi: 10.1161/CIRCULATIONAHA.106.631051 PubMedCrossRefGoogle Scholar
  16. 16.
    Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298:317–323. doi: 10.1001/jama.298.3.317 PubMedCrossRefGoogle Scholar
  17. 17.
    Earls J, Schrack E, Urban B et al (2008) Prospectively gated cardiac CT: an evaluation of radiation dose and use in 2000 clinical patients following beta blockade. Presented at the 10th annual international symposium on multidetector CT, Las Vegas, MayGoogle Scholar
  18. 18.
    Hendel RC, Patel MR, Kramer CM et al (2006) ACCF/ACR/SCCT/SCMR/ASNC/NASCI/SCAI/SIR 2006 appropriateness criteria for cardiac computed tomography and cardiac magnetic resonance imaging: a report of the American College of Cardiology Foundation Quality Strategic Directions Committee Appropriateness Criteria Working Group, American College of Radiology, Society of Cardiovascular Computed Tomography, Society for Cardiovascular Magnetic Resonance, American Society of Nuclear Cardiology, North American Society for Cardiac Imaging, Society for Cardiovascular Angiography and Interventions, and Society of Interventional Radiology. J Am Coll Cardiol 48(7):1475–1497. doi: 10.1016/j.jacc.2006.07.003 PubMedCrossRefGoogle Scholar
  19. 19.
    Cademartiri F, Mollet NR, Runz G et al (2006) Diagnostic accuracy of multislice computed tomography angiography is improved at low heart rates. Int J Cardiovasc Imaging 22:101–105. doi: 10.1007/s10554-005-9010-6 PubMedCrossRefGoogle Scholar
  20. 20.
    Wintersperger BJ, Nikolaou K, von Ziegler F et al (2006) Image quality, motion artifacts, and reconstruction timing of 64-slice coronary computed tomography angiography with 0.33-second rotation speed. Invest Radiol 41:436–442. doi: 10.1097/01.rli.0000202639.99949.c6 PubMedCrossRefGoogle Scholar
  21. 21.
    Leschka S, Scheffel H, Husmann L et al (2008) Effect of decrease in heart rate variability on the diagnostic accuracy of 64-MDCT coronary angiography. Am J Roentgenol 190(6):1583–1590. doi: 10.2214/AJR.07.2000 CrossRefGoogle Scholar
  22. 22.
    Leschka S, Wildermuth S, Boehm T et al (2006) Noninvasive coronary angiography with 64-section CT: effect of average heart rate and heart rate variability on image quality. Radiology 241(2):378–385. doi: 10.1148/radiol.2412051384 PubMedCrossRefGoogle Scholar
  23. 23.
    Decramer I, Vanhoenacker P, Sarno G et al (2008) Effects of sublingual nitroglycerin on coronary lumen diameter and number of visualized septal branches on 64-MDCT angiography. AJR 190:219–225. doi: 10.2214/AJR.07.2648 PubMedCrossRefGoogle Scholar
  24. 24.
    Dewey M, Hoffmann H, Hamm B (2006) Multislice CT coronary angiography: effect of sublingual nitroglycerin on the diameter of coronary arteries. Rofo 178:600–604PubMedGoogle Scholar
  25. 25.
    Feldman RL, Marx JD, Pepine CJ, Conti CR (1982) Analysis of coronary responses to various doses of intracoronary nitroglycerin. Circulation 66:321–327PubMedGoogle Scholar
  26. 26.
    Pfister M, Seiler C, Fleisch M, Gsbel H, Lüscher T, Meier B (1998) Nitrate induced coronary vasodilatation: differential effects of sublingual application by capsule or spray. Heart 80:365–369PubMedGoogle Scholar
  27. 27.
    European guidelines on quality criteria for computed tomography (2008) Available at: http://www.drs.dk/guidelines/ct/quality/index.htm. Accessed 6 August
  28. 28.
    Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357:2277–2284PubMedCrossRefGoogle Scholar
  29. 29.
    Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation, National Research Council (2005) Health risks from exposure to low levels of ionizing radiation: BEIR VII phase 2. The National Academies Press, WashingtonGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2008

Authors and Affiliations

  1. 1.Fairfax Radiological ConsultantsFairfaxUSA

Personalised recommendations