Initial evaluation of coronary images from 320-detector row computed tomography

  • Frank J. RybickiEmail author
  • Hansel J. Otero
  • Michael L. Steigner
  • Gabriel Vorobiof
  • Leelakrishna Nallamshetty
  • Dimitrios Mitsouras
  • Hale Ersoy
  • Richard T. Mather
  • Philip F. Judy
  • Tianxi Cai
  • Karl Coyner
  • Kurt Schultz
  • Amanda G. Whitmore
  • Marcelo F. Di Carli
Original Paper


Purpose To evaluate image quality and contrast opacification from coronary images acquired from 320-detector row computed tomography (CT). Patient dose is estimated for prospective and retrospective ECG-gating; initial correlation between 320-slice CT and coronary catheterization is illustrated. Methods Retrospective image evaluation from forty consecutive patients included subjective assessment of image quality and contrast opacification (80 ml iopamidol 370 mg I/ml followed by 40 ml saline). Region of interest opacification measurements at the ostium and at 2.5 mm diameter were used to determine the gradient of contrast opacification (defined as the proximal minus distal HU measurements) in coronary arteries imaged in a single heartbeat. Estimated effective dose was compared for prospective versus retrospective ECG-gating, two body mass index categories (30 kg/m2 cutoff), and single versus two heartbeat acquisition. When available, CT findings were correlated with those from coronary catheterization. Results Over 89% of arterial segments (15 segment model) had excellent image quality. The most common reason for image degradation was cardiac motion. One segment in one patient was considered unevaluable. Contrast opacification was almost universally considered excellent. The mean Hounsfield units (HU) was greater than 350; the coronary contrast opacification gradient was 30–50 HU. Patient doses were greater for retrospective ECG-gating, larger patients, and those imaged with two heartbeats. For the most common (n = 25) protocol (120 kV, 400 mA, prospective ECG-gating, 60–100% phase window, 16 cm craniocaudal coverage, single heartbeat), the mean dose was 6.8 ± 1.4 mSv. All CT findings were confirmed in the four patients who underwent coronary catheterization. Conclusion Initial 320-detector row coronary CT images have consistently excellent quality and iodinated contrast opacification. These patients were scanned with conservative protocols with respect to iodine load, prospective ECG-gating phase window, and craniocaudal coverage. Future work will focus on lowering contrast and radiation dose while maintaining image quality.


Computed tomography Coronary angiography Coronary vessels Image enhancement Radiation dosage 


  1. 1.
    Gershlick AH, de Belder M, Chambers J, Hackett D, Keal R, Kelion A et al (2007) Role of non-invasive imaging in the management of coronary artery disease: an assessment of likely change over the next 10 years. A report from the British Cardiovascular Society Working Group. Heart 93(4):423–431PubMedCrossRefGoogle Scholar
  2. 2.
    Hoe JW, Toh KH (2007) A practical guide to reading CT coronary angiograms-how to avoid mistakes when assessing for coronary stenoses. Int J Cardiovasc Imaging 23(5):617–633PubMedCrossRefGoogle Scholar
  3. 3.
    Limkakeng AT, Halpern E, Takakuwa KM (2007) Sixty-four-slice multidetector computed tomography: the future of ED cardiac care. Am J Emerg Med 25(4):450–458PubMedCrossRefGoogle Scholar
  4. 4.
    Ramos JJ, Williams M, Synetos A, Lerakis S (2007) Clinical utility of cardiac computed tomography. Am J Med Sci 334(5):350–355PubMedCrossRefGoogle Scholar
  5. 5.
    Baur LH (2008) Cardiac imaging at the emergency department is a must! The role of cardiac computed tomography and magnetic resonance imaging in the evaluation of acute chest pain in the emergency department. Int J Cardiovasc Imaging 24(3):343–344PubMedCrossRefGoogle Scholar
  6. 6.
    Vanhoenacker PK, Heijenbrok-Kal MH, Van Heste R, Decramer I, Van Hoe LR, Wijns W et al (2007) Diagnostic performance of multidetector CT angiography for assessment of coronary artery disease: meta-analysis. Radiology 244(2):419–428PubMedCrossRefGoogle Scholar
  7. 7.
    Scheffel H, Alkadhi H, Plass A, Vachenauer R, Desbiolles L, Gaemperli O et al (2006) Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control. Eur Radiol 16(12):2739–2747PubMedCrossRefGoogle Scholar
  8. 8.
    Raff GL, Gallagher MJ, O’Neill WW, Goldstein JA (2005) Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 46(3):552–557PubMedCrossRefGoogle Scholar
  9. 9.
    Mollet NR, Cademartiri F, van Mieghem CA, Runza G, McFadden EP, Baks T et al (2005) High-resolution spiral computed tomography coronary angiography in patients referred for diagnostic conventional coronary angiography. Circulation 112(15):2318–23PubMedCrossRefGoogle Scholar
  10. 10.
    Hoffmann MH, Shi H, Schmitz BL, Schmid FT, Lieberknecht M, Schulze R et al (2005) Noninvasive coronary angiography with multislice computed tomography. JAMA 293(20):2471–2478PubMedCrossRefGoogle Scholar
  11. 11.
    Bordeleau E, Lamonde A, Prenovault J, Belblidia A, Cote G, Lesperance J et al (2007) Accuracy and rate of coronary artery segment visualization with CT angiography for the non-invasive detection of coronary artery stenoses. Int J Cardiovasc Imaging 23(6):771–780PubMedCrossRefGoogle Scholar
  12. 12.
    Hamon M, Morello R, Riddell JW (2007) Coronary arteries: diagnostic performance of 16- versus 64-section spiral CT compared with invasive coronary angiography−meta-analysis. Radiology 245(3):720–731PubMedCrossRefGoogle Scholar
  13. 13.
    Pugliese F, Mollet NR, Hunink MG, Cademartiri F, Nieman K, van Domburg RT et al (2008) Diagnostic performance of coronary CT angiography by using different generations of multisection scanners: single-center experience. Radiology 246(2):384–393PubMedCrossRefGoogle Scholar
  14. 14.
    Jakobs TF, Wintersperger BJ, Herzog P, Flohr T, Suess C, Knez A et al (2003) Ultra-low-dose coronary artery calcium screening using multislice CT with retrospective ECG gating. Eur Radiol 13(8):1923–1930PubMedCrossRefGoogle Scholar
  15. 15.
    d’Agostino AG, Remy-Jardin M, Khalil C, Delannoy-Deken V, Flohr T, Duhamel A et al (2006) Low-dose ECG-gated 64-slices helical CT angiography of the chest: evaluation of image quality in 105 patients. Eur Radiol 16(10):2137–2146PubMedCrossRefGoogle Scholar
  16. 16.
    Gerber TC, Kuzo RS, Morin RL (2005) Techniques and parameters for estimating radiation exposure and dose in cardiac computed tomography. Int J Cardiovasc Imaging 21(1):165–176PubMedCrossRefGoogle Scholar
  17. 17.
    Husmann L, Valenta I, Gaemperli O, Adda O, Treyer V, Wyss CA et al (2008) Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. Eur Heart J 29(2):191–197PubMedCrossRefGoogle Scholar
  18. 18.
    Horiguchi J, Kiguchi M, Fujioka C, Shen Y, Arie R, Sunasaka K et al (2008) Radiation dose, image quality, stenosis measurement, and CT densitometry using ECG-triggered coronary 64-MDCT angiography: a phantom study. AJR Am J Roentgenol 190(2):315–320PubMedCrossRefGoogle Scholar
  19. 19.
    Earls JP, Berman EL, Urban BA, Curry CA, Lane JL, Jennings RS et al (2008) Prospectively gated transverse coronary CT angiography versus retrospectively gated helical technique: improved image quality and reduced radiation dose. Radiology 246(3):742–753PubMedCrossRefGoogle Scholar
  20. 20.
    Brodoefel H, Kramer U, Reimann A, Burgstahler C, Schroeder S, Kopp A et al (2007) Dual-source CT with improved temporal resolution in assessment of left ventricular function: a pilot study. AJR Am J Roentgenol 189(5):1064–1070PubMedCrossRefGoogle Scholar
  21. 21.
    Stolzmann P, Scheffel H, Schertler T, Frauenfelder T, Leschka S, Husmann L et al (2007) Radiation dose estimates in dual-source computed tomography coronary angiography. Eur Radiol 18(3):592–599PubMedCrossRefGoogle Scholar
  22. 22.
    Reimann AJ, Rinck D, Birinci-Aydogan A, Scheuering M, Burgstahler C, Schroeder S et al (2007) Dual-source computed tomography: advances of improved temporal resolution in coronary plaque imaging. Invest Radiol 42(3):196–203PubMedCrossRefGoogle Scholar
  23. 23.
    McCollough CH, Primak AN, Saba O, Bruder H, Stierstorfer K, Raupach R et al (2007) Dose performance of a 64-channel dual-source CT scanner. Radiology 243(3):775–784PubMedCrossRefGoogle Scholar
  24. 24.
    Matt D, Scheffel H, Leschka S, Flohr TG, Marincek B, Kaufmann PA et al (2007) Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability. AJR Am J Roentgenol 189(3):567–573PubMedCrossRefGoogle Scholar
  25. 25.
    Johnson TR, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16(7):1409–1415PubMedCrossRefGoogle Scholar
  26. 26.
    Mizuno N, Funabashi N, Imada M, Tsunoo T, Endo M, Komuro I (2007) Utility of 256-slice cone beam tomography for real four-dimensional volumetric analysis without electrocardiogram gated acquisition. Int J Cardiol 120(2):262–267PubMedCrossRefGoogle Scholar
  27. 27.
    Funabashi N, Mizuno N, Yoshida K, Tsunoo T, Mori S, Tanada S et al (2007) Superiority of synchrony of 256-slice cone beam computed tomography for acquiring pulsating objects. Comparison with conventional multislice computed tomography. Int J Cardiol 118(3):400–405PubMedCrossRefGoogle Scholar
  28. 28.
    Endo M, Mori S, Tsunoo T, Miyazaki H (2006) Magnitude and effects of x-ray scatter in a 256-slice CT scanner. Med Phys 33(9):3359–3368PubMedCrossRefGoogle Scholar
  29. 29.
    Mori S, Nishizawa K, Ohno M, Endo M (2006) Conversion factor for CT dosimetry to assess patient dose using a 256-slice CT scanner. Br J Radiol 79(947):888–892PubMedCrossRefGoogle Scholar
  30. 30.
    Mori S, Endo M, Nishizawa K, Murase K, Fujiwara H, Tanada S (2006) Comparison of patient doses in 256-slice CT and 16-slice CT scanners. Br J Radiol 79(937):56–61PubMedCrossRefGoogle Scholar
  31. 31.
    Mori S, Nishizawa K, Kondo C, Ohno M, Akahane K, Endo M (2007) Effective doses in subjects undergoing computed tomography cardiac imaging with the 256-multislice CT scanner. Eur J Radiol 65(3):442–448PubMedCrossRefGoogle Scholar
  32. 32.
    Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LS et al (1975) A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 51(4 Suppl):5–40PubMedGoogle Scholar
  33. 33.
    European Commission (2000) European guidelines on quality criteria for computed tomography. In. Luxembourg: Office for Official Publications of the European CommunitiesGoogle Scholar
  34. 34.
    Rybicki FJ, Sheth T (2004) Imaging protocol for cardiac CT. In: Siani S, Rubin G, Kalra M (eds) Multi detector CT protocols: a practical approach. Springer-Verlag, Milan, pp 97–110Google Scholar
  35. 35.
    Delhaye D, Remy-Jardin M, Rozel C, Dusson C, Wurtz A, Delannoy-Deken V et al (2007) Coronary artery imaging during preoperative CT staging: preliminary experience with 64-slice multidetector CT in 99 consecutive patients. Eur Radiol 17(3):591–602PubMedCrossRefGoogle Scholar
  36. 36.
    Muhlenbruch G, Seyfarth T, Soo CS, Pregalathan N, Mahnken AH (2007) Diagnostic value of 64-slice multi-detector row cardiac CTA in symptomatic patients. Eur Radiol 17(3):603–609PubMedCrossRefGoogle Scholar
  37. 37.
    Delhaye D, Remy-Jardin M, Salem R, Teisseire A, Khalil C, Delannoy-Deken V et al (2007) Coronary imaging quality in routine ECG-gated multidetector CT examinations of the entire thorax: preliminary experience with a 64-slice CT system in 133 patients. Eur Radiol 17(4):902–910PubMedCrossRefGoogle Scholar
  38. 38.
    Leschka S, Husmann L, Desbiolles LM, Gaemperli O, Schepis T, Koepfli P et al (2006) Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT. Eur Radiol 16(9):1964–1972PubMedCrossRefGoogle Scholar
  39. 39.
    Schueler BA (2000) The AAPM/RSNA physics tutorial for residents: general overview of fluoroscopic imaging. Radiographics 20(4):1115–1126PubMedGoogle Scholar
  40. 40.
    Ropers U, Ropers D, Pflederer T, Anders K, Kuettner A, Stilianakis NI et al (2007) Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography. J Am Coll Cardiol 50(25):2393–2398PubMedCrossRefGoogle Scholar
  41. 41.
    Woodhouse CE, Janowitz WR, Viamonte M Jr (1997) Coronary arteries: retrospective cardiac gating technique to reduce cardiac motion artifact at spiral CT. Radiology 204(2):566–569PubMedGoogle Scholar
  42. 42.
    Herzog C, Nguyen SA, Savino G, Zwerner PL, Doll J, Nielsen CD et al (2007) Does two-segment image reconstruction at 64-section CT coronary angiography improve image quality and diagnostic accuracy? Radiology 244(1):121–129PubMedCrossRefGoogle Scholar
  43. 43.
    Shu KM, MacKenzie JD, Smith JB, Blinder EM, Bourgeois LM, Ledbetter S et al (2006) Lowering the thyroid dose in screening examinations of the cervical spine. Emerg Radiol 12(3):133–136PubMedCrossRefGoogle Scholar
  44. 44.
    Einstein AJ, Henzlova MJ, Rajagopalan S (2007) Estimating risk of cancer associated with radiation exposure from 64-slice computed tomography coronary angiography. JAMA 298(3):317–323PubMedCrossRefGoogle Scholar
  45. 45.
    Jakobs TF, Becker CR, Ohnesorge B, Flohr T, Suess C, Schoepf UJ et al (2002) Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 12(5):1081–1086PubMedCrossRefGoogle Scholar
  46. 46.
    Paul JF, Abada HT (2007) Strategies for reduction of radiation dose in cardiac multislice CT. Eur Radiol 17(8):2028–2037PubMedCrossRefGoogle Scholar
  47. 47.
    Weinreb JC, Larson PA, Woodard PK, Stanford W, Rubin GD, Stillman AE et al (2005) ACR clinical statement on noninvasive cardiac imaging. J Am Coll Radiol 2(6):471–477PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, B.V. 2008

Authors and Affiliations

  • Frank J. Rybicki
    • 1
    • 2
    Email author
  • Hansel J. Otero
    • 1
    • 2
  • Michael L. Steigner
    • 1
  • Gabriel Vorobiof
    • 1
  • Leelakrishna Nallamshetty
    • 1
  • Dimitrios Mitsouras
    • 1
    • 2
  • Hale Ersoy
    • 1
    • 2
  • Richard T. Mather
    • 3
  • Philip F. Judy
    • 2
  • Tianxi Cai
    • 2
    • 4
  • Karl Coyner
    • 1
  • Kurt Schultz
    • 3
  • Amanda G. Whitmore
    • 2
  • Marcelo F. Di Carli
    • 1
  1. 1.Noninvasive Cardiovascular ImagingBrigham and Women’s HospitalBostonUSA
  2. 2.Department of Radiology, Applied Imaging Science LaboratoryBrigham and Women’s HospitalBostonUSA
  3. 3.Toshiba America Medical SystemsTustinUSA
  4. 4.Department of BiostatisticsHarvard School of Public HealthBostonUSA

Personalised recommendations