CFD analysis in an anatomically realistic coronary artery model based on non-invasive 3D imaging: comparison of magnetic resonance imaging with computed tomography

  • Leonid Goubergrits
  • Ulrich Kertzscher
  • Bastian Schöneberg
  • Ernst Wellnhofer
  • Christoph Petz
  • Hans-Christian Hege
Original Paper


Computational fluid dynamics (CFD) methods based on in vivo three-dimensional vessel reconstructions have recently been shown to provide prognostically relevant hemodynamic data. However, the geometry reconstruction and the assessment of clinically relevant hemodynamic parameters may depend on the used imaging modality. This study compares geometric reconstruction and calculated wall shear stress (WSS) values based on magnetic resonance imaging (MRI) and computed tomography (CT). Both imaging methods were applied to a same 2.5-fold upscale silicon model of the left coronary artery (LCA) main bifurcation. The original model is an optically digitized post mortem vessel cast. This digitized geometry is considered as a “gold standard” or original geometry for the MRI versus CT comparative study. The use of the upscale model allowed generating a high resolution CT raw data set with voxel size of 0.156 × 0.156 × 0.36 mm3 and a high resolution MRI data set with an equivalent voxel size of 0.196 × 0.196 × 0.196 mm3 for corresponding in vivo conditions. MRI based reconstruction achieved a mean Hausdorff surface distance of 0.1 mm to the original geometry. This is 2.5 times better than CT based reconstruction with mean Hausdorff surface distance of 0.252 mm. A comparison of the calculated mean WSS shows good correlation (r = 0.97) and good agreement among the three modalities with a WSS of 0.65 Pa in the original model, of 0.68 Pa in the CT based model and of 0.67 Pa in the MRI based model.


Left coronary artery Geometry reconstruction MRI CT angiography CFD Wall shear stress 



This study was supported by German Research Foundation (DFG). We thank Dr. Jose Fernandez-Britto, Pathology department of the Dr. Finlay Hospital, Havana, Cuba, who fabricated the cast of the left coronary artery.


  1. 1.
    Asakura T, Karino T (1990) Flow patterns and spatial distribution of atherosclerotic lesions in human coronary arteries. Circ Res 66:1045–1066PubMedGoogle Scholar
  2. 2.
    Frangos SG (1999) Localization of atherosclerosis: role of hemodynamics. Arch Surg 134:1142–1149PubMedCrossRefGoogle Scholar
  3. 3.
    Ali MH, Schumacker PT (2002) Endothelial responses to mechanical stress: where is the mechanosensor? Crit Care Med 30(Suppl.):S198–S206PubMedCrossRefGoogle Scholar
  4. 4.
    Busse R, Fleming I (2003) Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol Sci 24(1):1CrossRefGoogle Scholar
  5. 5.
    Cirino G, Fiorucci S, Sessa WC (2003) Endothelial nitric oxide synthase: the Cinderella of inflammation? Trends Pharmacol Sci 24(2):1CrossRefGoogle Scholar
  6. 6.
    Griffith TM (2002) Endothelial control of vascular tone by nitric oxide and gap junctions: a haemodynamic perspective. Biorheology 39:307–318PubMedGoogle Scholar
  7. 7.
    Resnick N, Einav S, Chen-Konak L, Zilberman M, Yahav H, Shay-Salit A (2003) Hemodynamic forces as stimulus for arteriogenesis. Endothelium 10(4–5):197–206PubMedCrossRefGoogle Scholar
  8. 8.
    Bom N, de Korte CL, Wentzel JJ, Krams R, Carlier SG, van der Steen AW, Slager CJ, Roelandt JR (2000) Quantification of plaque volume, shear stress on the endothelium, and mechanical properties of the arterial wall with intravascular ultrasound imaging. Z Kardiol 89(Suppl 2):105–111PubMedCrossRefGoogle Scholar
  9. 9.
    Goubergrits L, Affeld K, Wellnhofer E, Zurbrugg R, Holmer T (2001) Estimation of wall shear stress in bypass grafts with computational fluid dynamics method. Int J Artif Organs 24:145–151PubMedGoogle Scholar
  10. 10.
    Hoffmann KR, Wahle A, Pellot-Barakat C, Sklansky J, Sonka M (1999) Biplane X-ray angiograms, intravascular ultrasound, and 3D visualization of coronary vessels. Int J Card Imaging 15:495–512PubMedCrossRefGoogle Scholar
  11. 11.
    Ilegbusi OJ, Hu Z, Nesto R, Waxman S, Cyganski D, Kilian J, Stone PH, Feldman CL (1999) Determination of blood flow and endothelial shear stress in human coronary artery in vivo. J Invasive Cardiol 11:667–674PubMedGoogle Scholar
  12. 12.
    Krams R, Wentzel JJ, Oomen JA, Vinke R, Schuurbiers JC, de Feyter PJ, Serruys PW, Slager CJ (1997) Evaluation of endothelial shear stress and 3D geometry as factors determining the development of atherosclerosis and remodeling in human coronary arteries in vivo. Combining 3D reconstruction from angiography and IVUS with computational fluid dynamics. Arterioscler Thromb Vasc Biol 17:2061–2065PubMedGoogle Scholar
  13. 13.
    Stone PH, Coskun AU, Yeghiazarians Y, Kinlay S, Popma JJ, Kuntz RE, Feldman CL (2003) Prediction of sites of coronary atherosclerosis progression: in vivo profiling of endothelial shear stress, lumen, and outer vessel wall characteristics to predict vascular behavior. Curr Opin Cardiol 18:458–470PubMedCrossRefGoogle Scholar
  14. 14.
    Feldman CL, Ilegbusi OJ, Hu Z, Nesto R, Waxman S, Stone PH (2002) Determination of in vivo velocity and endothelial shear stress patterns with phasic flow in human coronary arteries: a methodology to predict progression of coronary atherosclerosis. Am Heart J 143:931–939PubMedCrossRefGoogle Scholar
  15. 15.
    Glor FP, Ariff B, Hughes AD, Crowe LA, Verdonck PR, Barratt DC, McG Thom SA, Firmin DN, Xu XY (2004) Image-based carotid flow reconstruction: a comparison between MRI and ultrasound. Physiol Meas 25:1495–1509PubMedCrossRefGoogle Scholar
  16. 16.
    Glor FP, Long Q, Hughes AD, Augst AD, Ariff B, McG Thom SA, Verdonck PR, Xu XY (2003) Reproducibility study of magnetic resonance image-based computational fluid dynamics prediction of carotid bifurcation flow. Ann Biomed Eng 31:142–151PubMedCrossRefGoogle Scholar
  17. 17.
    Majoie ChBLM, Sprengers ME, van Rooij WJJ, Lavini C, Sluzewski M, van Rijn JC, den Heeten GJ (2005) MR angiography at 3T versus digital subtraction angiography in the follow-up of intracranial aneurysms treated with detachable coils. Am J Neuroradiol 26:1349–1356PubMedGoogle Scholar
  18. 18.
    Birchall D, Zaman A, Hacker J, Davies G, Mendelow D (2006) Analysis of haemodynamic disturbance in the atherosclerotic carotid artery using computational fluid dynamics. Europ Radiol 16:1074–1083CrossRefGoogle Scholar
  19. 19.
    Affeld K, Goubergrits L, Fernandez-Britto J, Falkon L (1998) Variability of the geometry of the human common carotid artery, a vessel cast study of 31 specimens. Path Res Pract 194:597–602PubMedGoogle Scholar
  20. 20.
    Munkres J (1999) Topology, 2nd edn. Prentice HallGoogle Scholar
  21. 21.
    Prakash S, Ethier CR (2001) Requirements for mesh resolution in 3-D computational hemodynamics. J Biomed Eng 123:26–38Google Scholar
  22. 22.
    Berthier B, Bouzerar R, Legallais C (2002) Blood flow patterns in an anatomically realistic coronary vessel: influence of three different reconstruction methods. J Biomech 35:1347–1356PubMedCrossRefGoogle Scholar
  23. 23.
    Wellnhofer E, Goubergrits L, Kertzscher U, Affeld K (2006) In-vivo coronary flow profiling based on biplane angiograms: influence of geometric simplifications on the three-dimensional reconstruction and wall shear stress calculation. Biomed Eng Online 5(1):39PubMedCrossRefGoogle Scholar
  24. 24.
    Nijenhuis RJ, Jacobs MJ, Jaspers K, Reijnders M, van Engelshoven JMA, Leiner T, Backes WH (2007) Comparison of magnetic resonance with computed tomography angiography for preoperative localization of the Adamkiewicz artery in thoracoabdominal aortic aneurysm patients. J Vascular Surg 45:677–685CrossRefGoogle Scholar
  25. 25.
    Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis J Am Med Assoc 282:2035–2042CrossRefGoogle Scholar
  26. 26.
    Lei M, Kleinstreuer C, Truskex GA (1996) A focal stress gradient-dependent mass transfer mechanism for atherogenesis in branching arteries. Med Eng Phys 18(4):326–332PubMedCrossRefGoogle Scholar
  27. 27.
    Kleinstreuer C, Hyun S, Buchanan JR, Longest PW, Archie JP, Truskey GA (2001) Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng 29:1–64PubMedGoogle Scholar
  28. 28.
    He XJ, Ku DN (1996) Pulsatile flow in the human left coronary artery bifurcation: average conditions. J Biomech Eng Trans ASME 118:74–82CrossRefGoogle Scholar
  29. 29.
    Buchanan JR, Kleinstreuer C, Truskey GA, Lei M (1999) Relation between non-uniform hemodynamics and sites of altered permeability and lesion growth at the rabbit aorto-celiac junction. Atherosclerosis 143:27–40PubMedCrossRefGoogle Scholar
  30. 30.
    Longest PW (2002) Computational analyses of transient particle hemodynamics with applications to femoral bypass graft designs. PhD Thesis North Carolina State University, RaleighGoogle Scholar
  31. 31.
    Wellnhofer E, Bocksch W, Hiemann N, Dandel M, Klimek W, Hetzer R, Fleck E (2002) Shear stress and vascular remodeling: study of cardiac allograft coronary artery disease as a model of diffuse atherosclerosis. J Heart Lung Transplant 21:405–416PubMedCrossRefGoogle Scholar
  32. 32.
    Myers JG, Moore JA, Ojha M, Johnston KW, Ethier CR (2001) Factors influencing blood flow patterns in the human right coronary artery. Ann Biomed Eng 29:109–120PubMedCrossRefGoogle Scholar
  33. 33.
    Perktold K, Hofer M, Rappitsch G, Loew M, Kuban BD, Friedman MH (1998) Validated computation of physiologic flow in a realistic coronary artery branch. J Biomech 31:217–228PubMedCrossRefGoogle Scholar
  34. 34.
    Perktold K, Kenner Th (1993) Flow and stress characteristics in rigid walled and compliant carotid artery bifurcation models. Medical-Biological Engineering-Computing, Graz, Austria, pp 1–20Google Scholar
  35. 35.
    Moore JEJ, Guggenheim N, Delfino A, Doriot PA, Dorsaz PA, Rutishauser W, Meister JJ (1994) Preliminary analysis of the effects of blood vessel movement on blood flow patterns in the coronary arteries. J Biomech Eng 116:302–306PubMedGoogle Scholar
  36. 36.
    Perktold K, Resch M, Florian H (1991) Pulsatile non-Newtonian flow characteristics in a three-dimensional human carotid bifurcation model. Biomech Engin 113:464–475Google Scholar
  37. 37.
    LaDisa JF, Olsona LE, Gulere I, Hettricka DA, Kerstenb JR, Warltiera DC, Pagela PS (2005) Circumferential vascular deformation after stent implantation alters wall shear stress evaluated with time-dependent 3D computational fluid dynamics models. J Appl Physiol 98(3):947–957PubMedCrossRefGoogle Scholar
  38. 38.
    Aquaro GD, Di Bella G, Strata E, Deiana M, De Marchi D, Pingitore A, Lombardi M (2007) Cardiac magnetic resonance findings in isolated congenital left ventricular diverticuli. Int J Cardiovasc Imaging 23:43–47PubMedCrossRefGoogle Scholar
  39. 39.
    Sato Y, Komatsu S, Matsumoto N, Yoda Sh, Tani Sh, Kunimoto S, Takayama T, Kasamaki Y, Saito S (2007) Isolated subvalvular pulmonary stenosis: depiction at whole heart magnetic resonance imaging. Int J Cardiovasc Imaging 23:49–52PubMedCrossRefGoogle Scholar
  40. 40.
    Coles DR, Wilde P, Oberhoff M, Rogers ChA, Karsch KR, Baumbach A (2007) Multislice computed tomography coronary angiography in patients admitted with a suspected acute coronary syndrome. Int J Cardiovasc Imaging 23:603–614PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • Leonid Goubergrits
    • 1
  • Ulrich Kertzscher
    • 1
  • Bastian Schöneberg
    • 1
  • Ernst Wellnhofer
    • 2
  • Christoph Petz
    • 3
  • Hans-Christian Hege
    • 3
  1. 1.Biofluidmechanics LaboratoryCharité – Universitaetsmedizin BerlinBerlinGermany
  2. 2.Department of CardiologyGerman Heart Institute BerlinBerlinGermany
  3. 3.Scientific VisualizationKonrad Zuse InstituteBerlinGermany

Personalised recommendations