The benefit of 64-MDCT prior to invasive coronary angiography in symptomatic post-CABG patients

  • R. Dikkers
  • T. P. Willems
  • R. A. Tio
  • R. L. Anthonio
  • F. Zijlstra
  • M. Oudkerk
Original Paper



The purpose of this study is to assess the diagnostic accuracy of 64-MDCT in symptomatic patients after CABG and to explore the advantages of the 64-MDCT results on the CAG procedure.

Material and methods

From December 2004 until August 2005, 34 post-CABG patients (29 men, mean age 63.5 ± 8.5 years) with 69 coronary artery bypass grafts were scanned on a 64-MDCT (Somatom Sensation 64, Siemens AG, Forchheim, Germany) prior to CAG. Angiograms and 64-MDCT images were evaluated for the existence of occlusions or significant stenosis (≥50% lumen reduction) in bypass grafts and native coronary arteries.


64-MDCT had a sensitivity, a specificity, and a diagnostic accuracy of 100% for occlusion detection. For stenosis detection, sensitivity was 100%, specificity 98.7% and diagnostic accuracy 98.7%. For detecting significant stenosis in native coronary arteries, 64-MDCT had a sensitivity of 80.0%, specificity of 90.8%, and a diagnostic accuracy of 87.1%.

Seventeen patients (50.0%) did not need invasive treatment, 14 patients (41.2%) underwent a percutaneous coronary intervention (PCI), and 3 patients (8.8%) underwent surgery. Treatment advice based on 64-MDCT was correct in 88.2% of patients and when 64-MDCT results would have been known 58.8% of diagnostic CAG procedures could have been prevented.


In conclusion, 64-MDCT has a high diagnostic accuracy in detecting bypass graft stenosis and occlusions, and 64-MDCT based treatment advice was correct in 88.2% of patients.


Computed tomography Coronary artery bypass Coronary disease 



coronary angiography


gastroduodenal artery


gastroepiploic artery


left anterior descending artery


left circumflex artery


left internal mammary artery


left main


multidetector computed tomography


percutaneous intervention procedure


right coronary artery


right internal mammary artery


standard deviation



The authors thank Dr. EJK Noach for her assistance in the preparation of the manuscript and WGJ Tukker for his technical advice.


  1. 1.
    Cameron AA, Davis KB, Rogers WJ (1995) Recurrence of angina after coronary artery bypass surgery: predictors and prognosis (CASS Registry). Coronary Artery Surgery Study. J Am Coll Cardiol 26(4):895–899PubMedCrossRefGoogle Scholar
  2. 2.
    Barner HB, Sundt TM III, Bailey M, Zang Y (2001) Midterm results of complete arterial revascularization in more than 1,000 patients using an internal thoracic artery/radial artery T graft. Ann Surg 234(4):447–452PubMedCrossRefGoogle Scholar
  3. 3.
    Fitzgibbon GM, Kafka HP, Leach AJ, Keon WJ, Hooper GD, Burton JR (1996) Coronary bypass graft fate and patient outcome: angiographic follow-up of 5,065 grafts related to survival and reoperation in 1,388 patients during 25 years. J Am Coll Cardiol 28(3):616–626PubMedCrossRefGoogle Scholar
  4. 4.
    Smith SC Jr, Dove JT, Jacobs AK, Kennedy JW, Kereiakes D, Kern MJ et al (2001) ACC/AHA guidelines of percutaneous coronary interventions (revision of the 1993 PTCA guidelines)–executive summary. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (committee to revise the 1993 guidelines for percutaneous transluminal coronary angioplasty). J Am Coll Cardiol 37(8):2215–2239PubMedCrossRefGoogle Scholar
  5. 5.
    van Domburg RT, Foley DP, Breeman A, van Herwerden LA, Serruys PW (2002) Coronary artery bypass graft surgery and percutaneous transluminal coronary angioplasty. Twenty-year clinical outcome. Eur Heart J 23(7):543–549PubMedCrossRefGoogle Scholar
  6. 6.
    Ropers D, Ulzheimer S, Wenkel E, Baum U, Giesler T, Derlien H et al. (2001) Investigation of aortocoronary artery bypass grafts by multislice spiral computed tomography with electrocardiographic-gated image reconstruction. Am J Cardiol 88(7):792–795PubMedCrossRefGoogle Scholar
  7. 7.
    Leber AW, Knez A, von Ziegler F, Becker A, Nikolaou K, Paul S et al (2005) Quantification of obstructive and nonobstructive coronary lesions by 64-slice computed tomography: a comparative study with quantitative coronary angiography and intravascular ultrasound. J Am Coll Cardiol 46(1):147–154PubMedCrossRefGoogle Scholar
  8. 8.
    Leschka S, Alkadhi H, Plass A, Desbiolles L, Grunenfelder J, Marincek B et al (2005) Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 26(15):1482–1487PubMedCrossRefGoogle Scholar
  9. 9.
    Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16(1):31–41PubMedCrossRefGoogle Scholar
  10. 10.
    Dorgelo J, Willems TP, van Ooijen PM, Panday GF, Boonstra PW, Zijlstra F et al (2005) A 16-slice multidetector computed tomography protocol for evaluation of the gastroepiploic artery grafts in patients after coronary artery bypass surgery. Eur Radiol 15(9):1994–1999PubMedCrossRefGoogle Scholar
  11. 11.
    Marano R, Storto ML, Maddestra N, Bonomo L (2004) Non-invasive assessment of coronary artery bypass graft with retrospectively ECG-gated four-row multi-detector spiral computed tomography. Eur Radiol 14(8):1353–1362PubMedCrossRefGoogle Scholar
  12. 12.
    Yoo KJ, Choi D, Choi BW, Lim SH, Chang BC (2003) The comparison of the graft patency after coronary artery bypass grafting using coronary angiography and multi-slice computed tomography. Eur J Cardiothorac Surg 24(1):86–91PubMedCrossRefGoogle Scholar
  13. 13.
    Anders K, Baum U, Schmid M, Ropers D, Schmid A, Pohle K et al (2006) Coronary artery bypass graft (CABG) patency: assessment with high-resolution submillimeter 16-slice multidetector-row computed tomography (MDCT) versus coronary angiography. Eur J Radiol 57(3):336–344PubMedCrossRefGoogle Scholar
  14. 14.
    Chiurlia E, Menozzi M, Ratti C, Romagnoli R, Modena MG (2005) Follow-up of coronary artery bypass graft patency by multislice computed tomography. Am J Cardiol 95(9):1094–1097PubMedCrossRefGoogle Scholar
  15. 15.
    Kamiya H, Ushijima T, Ikeda C, Watanabe G (2004) Gastroepiploic artery graft angiography via brachial approach using a Yumiko catheter. Catheter Cardiovasc Interv 61(3):350–353PubMedCrossRefGoogle Scholar
  16. 16.
    Bergsma TM, Grandjean JG, Voors AA, Boonstra PW, den Heyer P, Ebels T (1998) Low recurrence of angina pectoris after coronary artery bypass graft surgery with bilateral internal thoracic and right gastroepiploic arteries. Circulation 97(24):2402–2405PubMedGoogle Scholar
  17. 17.
    Hirose H, Amano A, Takanashi S, Takahashi A (2002) Coronary artery bypass grafting using the gastroepiploic artery in 1,000 patients. Ann Thorac Surg 73(5):1371–1379PubMedCrossRefGoogle Scholar
  18. 18.
    Isshiki T, Yamaguchi T, Nakamura M, Saeki F, Itaoka Y, Nagahara T et al (1990) Postoperative angiographic evaluation of gastroepiploic artery grafts: technical considerations and short-term patency. Cathet Cardiovasc Diagn 21(4):233–238PubMedCrossRefGoogle Scholar
  19. 19.
    Hausleiter J, Meyer T, Hadamitzky M, Huber E, Zankl M, Martinoff S et al (2006) Radiation dose estimates from cardiac multislice computed tomography in daily practice: impact of different scanning protocols on effective dose estimates. Circulation 113(10):1305–1310PubMedCrossRefGoogle Scholar
  20. 20.
    Mollet NR, Cademartiri F (2005) Computed tomography assessment of coronary bypass grafts: ready to replace conventional angiography?. Int J Cardiovasc Imaging 21(4):453–454PubMedCrossRefGoogle Scholar
  21. 21.
    Zanzonico P, Rothenberg LN, Strauss HW (2006) Radiation exposure of computed tomography and direct intracoronary angiography: risk has its reward. J Am Coll Cardiol 47(9):1846–1849PubMedCrossRefGoogle Scholar
  22. 22.
    Flohr TG, McCollough CH, Bruder H, Petersilka M, Gruber K, Suss C et al (2006) First performance evaluation of a dual-source CT (DSCT) system. Eur Radiol 16(2):256–268PubMedCrossRefGoogle Scholar
  23. 23.
    Johnson TR, Nikolaou K, Wintersperger BJ, Leber AW, von Ziegler F, Rist C et al (2006) Dual-source CT cardiac imaging: initial experience. Eur Radiol 16(7):1409–1415PubMedCrossRefGoogle Scholar
  24. 24.
    Gillinov AM, Casselman FP, Lytle BW, Blackstone EH, Parsons EM, Loop FD et al (1999) Injury to a patent left internal thoracic artery graft at coronary reoperation. Ann Thorac Surg 67(2):382–386PubMedCrossRefGoogle Scholar
  25. 25.
    Aviram G, Sharony R, Kramer A, Nesher N, Loberman D, Ben Gal Y et al (2005) Modification of surgical planning based on cardiac multidetector computed tomography in reoperative heart surgery. Ann Thorac Surg 79(2):589–595PubMedCrossRefGoogle Scholar
  26. 26.
    Gasparovic H, Rybicki FJ, Millstine J, Unic D, Byrne JG, Yucel K et al (2005) Three dimensional computed tomographic imaging in planning the surgical approach for redo cardiac surgery after coronary revascularization. Eur J Cardiothorac Surg 28(2):244–249PubMedCrossRefGoogle Scholar
  27. 27.
    Gilkeson RC, Markowitz AH, Ciancibello L (2003) Multisection CT evaluation of the reoperative cardiac surgery patient. Radiographics 23 Spec No:S3–S17Google Scholar
  28. 28.
    Fernandez GC (2005) Bypass graft imaging and coronary anomalies in MDCT. Eur Radiol 15(Suppl 2):B59–B61PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • R. Dikkers
    • 1
  • T. P. Willems
    • 1
  • R. A. Tio
    • 2
  • R. L. Anthonio
    • 2
  • F. Zijlstra
    • 2
  • M. Oudkerk
    • 1
  1. 1.Department of RadiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands
  2. 2.Department of CardiologyUniversity Medical Center Groningen, University of GroningenGroningenThe Netherlands

Personalised recommendations