Rationale and methods of the integrated biomarker and imaging study (IBIS): combining invasive and non-invasive imaging with biomarkers to detect subclinical atherosclerosis and assess coronary lesion biology

  • Carlos A. G. Van. Mieghem
  • Nico Bruining
  • Johannes A. Schaar
  • Eugene McFadden
  • Nico Mollet
  • Filippo Cademartiri
  • Frits Mastik
  • Jurgen M. R. Ligthart
  • Gaston A. Rodriguez. Granillo
  • Marco Valgimigli
  • Georgios Sianos
  • Willem J. van der. Giessen
  • Bianca Backx
  • Marie-Angele M. Morel
  • Gerrit-Anne Van Es
  • Jonathon D. Sawyer
  • June Kaplow
  • Andrew Zalewski
  • Anton F. W. vander. Steen
  • Pim de Feyter
  • Patrick W. Serruys
Article
  • 104 Downloads

Abstract

Death or myocardial infarction, the most serious clinical consequences of atherosclerosis, often result from plaque rupture at non-flow limiting lesions. Current diagnostic imaging with coronary angiography only detects large plaques that already impinge on the lumen and cannot accurately identify those that have a propensity to cause unheralded events. Accurate evaluation of the composition or of the biomechanical characteristics of plaques with invasive or non-invasive methods, alone or in conjunction with assessment of circulating biomarkers, could help identify high-risk patients, thus providing the rationale for aggressive treatments in order to reduce future clinical events. The IBIS (Integrated Biomarker and Imaging Study) study is a prospective, single-center, non-randomized, observational study conducted in Rotterdam. The aim of the IBIS study is to evaluate both invasive (quantitative coronary angiography, intravascular ultrasound (IVUS) and palpography) and non-invasive (multislice spiral computed tomography) imaging techniques to characterize non-flow limiting coronary lesions. In addition, multiple classical and novel biomarkers will be measured and their levels correlated with the results of the different imaging techniques. A minimum of 85 patients up to a maximum of 120 patients will be included. This paper describes the study protocol and methodological solutions that have been devised for the purpose of comparisons among several imaging modalities. It outlines the analyses that will be performed to compare invasive and non-invasive imaging techniques in conjunction with multiple biomarkers to characterize non-flow limiting subclinical coronary lesions.

Keywords

atherosclerosis biomarkers computed tomography coronary artery disease intravascular ultrasound palpography 

Abbreviations

EEM

external elastic membrane

HU

Hounsfield units

IVUS

intravascular ultrasound

MSCT

multislice spiral computed tomography

PCI

percutaneous coronary intervention

QCU

Quantitative Coronary Ultrasound

RF

radio frequency

ROI

region of interest

STEMI

ST elevation myocardial infarction

US

ultrasound

VH

virtual histology

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ambrose, JA, Tannenbaum, MA, Alexopoulos, D, Hjemdahl-Monsen, CE, Leavy, J, Weiss, M,  et al. 1988Angiographic progression of coronary artery disease and the development of myocardial infarctionJ Am Coll Cardiol125662PubMedGoogle Scholar
  2. 2.
    Haft, JI, Haik, BJ, Goldstein, JE, Brodyn, NE 1988Development of significant coronary artery lesions in areas of minimal disease. A common mechanism for coronary disease progressionChest94731736PubMedGoogle Scholar
  3. 3.
    Little, WC, Constantinescu, M, Applegate, RJ, Kutcher, MA, Burrows, MT, Kahl, FR,  et al. 1988Can coronary angiography predict the site of a subsequent myocardial infarction in patients with mild-to-moderate coronary artery disease?Circulation7811571166PubMedGoogle Scholar
  4. 4.
    Falk, E, Shah, PK, Fuster, V 1995Coronary plaque disruptionCirculation92657671PubMedGoogle Scholar
  5. 5.
    Kullo, IJ, Edwards, WD, Schwartz, RS 1998Vulnerable plaque: pathobiology and clinical implicationsAnn Intern Med12910501060PubMedGoogle Scholar
  6. 6.
    Naghavi, M, Libby, P, Falk, E,  et al. 2003From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part IICirculation10817721778PubMedGoogle Scholar
  7. 7.
    Naghavi, M, Libby, P, Falk, E, Casscells, SW, Litovsky, S, Rumberger, J,  et al. 2003From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part ICirculation10816641672PubMedGoogle Scholar
  8. 8.
    Schaar, JA, Muller, JE, Falk, E,  et al. 2004Terminology for high-risk and vulnerable coronary arterty plaquesEur Heart J2510771082PubMedGoogle Scholar
  9. 9.
    Virmani, R, Kolodgie, FD, Burke, AP, Farb, A, Schwartz, SM 2000Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesionsArterioscler Thromb Vasc Biol2012621275PubMedGoogle Scholar
  10. 10.
    Ross, R 1999Atherosclerosis is an inflammatory diseaseAm Heart J138S419S420PubMedGoogle Scholar
  11. 11.
    Kolodgie, FD, Burke, AP, Farb, A,  et al. 200lThe thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromesCurr Opin Cardiol16285292Google Scholar
  12. 12.
    Libby, P 2002Inflammation in atherosclerosisNature420868874PubMedGoogle Scholar
  13. 13.
    Libby, P, Ridker, PM, Maseri, A 2002Inflammation and atherosclerosisCirculation10511352243PubMedGoogle Scholar
  14. 14.
    Davies, MJ 1996Stability and instability: two faces of coronary atherosclerosis. The Paul Dudley White Lecture 1995Circulation9420132020PubMedGoogle Scholar
  15. 15.
    Kolodgie, FD, Gold, HK, Burke, AP,  et al. 2003Intraplaque hemorrhage and progression of coronary atheromaN Engl J Med34923162325PubMedGoogle Scholar
  16. 16.
    Glagov, S, Weisenberg, E, Zarins, CK, Stankunavicius, R, Kolettis, GJ 1987Compensatory enlargement of human atherosclerotic coronary arteriesN Engl J Med31613711375PubMedGoogle Scholar
  17. 17.
    Schoenhagen, P, Ziada, KM, Vince, DG, Nislen, SE, Tuzcu, EM 2001Arterial remodeling and coronary artery disease: the concept of “dilated” versus “obstructive” coronary atherosclerosisJ Am Coll Cardiol38297306PubMedGoogle Scholar
  18. 18.
    Nissen, SE, Yock, P 2001Intravascular ultrasound: novel pathophysiological insights and current clinical applicationsCirculation103604616PubMedGoogle Scholar
  19. 19.
    Korte, CL, Pasterkamp, G, Steen, AF, Woutman, HA, Born, N 2000Characterization of plaque components with intravascular ultrasound elastography in human femoral and coronary arteries in vitroCirculation102617623PubMedGoogle Scholar
  20. 20.
    Feyter, PJ, Nieman, K, Ooijen, P, Oudkerk, M 2000Non-invasive coronary artery imaging with electron beam computed tomography and magnetic resonance imagingHeart84442448PubMedGoogle Scholar
  21. 21.
    Ross, R 1999Atherosclerosis – an inflammatory diseaseN Engl J Med340115126PubMedGoogle Scholar
  22. 22.
    Pearson, TA, Mensah, GA, Alexander, RW, Anderson, JL, Cannon, RO,III, Criqui, M,  et al. 2003Markers of inflammation and cardiovascular disease: application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart AssociationCirculation107499511PubMedGoogle Scholar
  23. 23.
    Ridker, PM, Rifai, N, Rose, L, Buring, JE, Cook, NR 2002Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular eventsN Engl J Med34715571565PubMedGoogle Scholar
  24. 24.
    Ridker, PM 2003Clinical application of C-reactive protein for cardiovascular disease detection and preventionCirculation107363369PubMedGoogle Scholar
  25. 25.
    Ridker, PM, Hennekens, CH, Roitman-Johnson, B, Stampfer, MJ, Allen, J 1998Plasma concentration of soluble intercellular adhesion molecule 1 and risks of future myocardial infarction in apparently healthy menLancet3518892PubMedGoogle Scholar
  26. 26.
    Biasucci, LM, Vitelli, A, Liuzzo, G,  et al. 1996Elevated levels of interleukin-6 in unstable anginaCirculation94874877PubMedGoogle Scholar
  27. 27.
    Cesari, M, Penninx, BW, Newman, AB,  et al. 2003Inflammatory markers and onset of cardiovascular events: results from the Health ABC studyCirculation10823172322PubMedGoogle Scholar
  28. 28.
    Bayes-Genis, A, Conover, CA, Overgaard, MT,  et al. 2001Pregnancy-associated plasma protein A as a marker of acute coronary syndromesN Engl J Med34510221029PubMedGoogle Scholar
  29. 29.
    Feyter, PJ, Serruys, PW, Davies, MJ, Richardson, P, Lubsen, J, Oliver, MF 1991Quantitative coronary angiography to measure progression and regression of coronary atherosclerosis.Value, limitations, and implications for clinical trialsCirculation84412423PubMedGoogle Scholar
  30. 30.
    Reiber, JHC, Zwet, PM,  et al. 1994

    Accuracy and precision of quantitative digital coronary arteriography; observer-, as well as short- and medium-term variabilities

    Serruys, PWFoley, DPFeyter, PJ eds. Quantitative coronary angiography in clinical practiceKluwer Academic PublishersDordrecht726
    Google Scholar
  31. 31.
    Hamers, R, Bruining, N, Knook, M, Sabate, M, Roelandt, JRTC 2001A novel approach to quantitative analysis of Intravascular Ultrasound ImagesComputers Cardiol28589592Google Scholar
  32. 32.
    Bruining, N, Birgelen, C, Feyter, PJ,  et al. 1998ECG-gated versus nongated three-dimensional intracoronary ultrasound analysis: implications for volumetric measurementsCathet Cardiovasc Diagn43254260PubMedGoogle Scholar
  33. 33.
    Winter, SA, Hamers, R, Degertekin, M,  et al. 2004Retrospective image-based gating of intracoronary ultrasound images for improved quantitative analysis: the intelligate methodCatheter Cardiovasc Interv618494PubMedGoogle Scholar
  34. 34.
    Birgelen, C, Vrey, EA, Mintz, GS,  et al. 1997ECG-gated three-dimensional intravascular ultrasound: feasibility and reproducibility of the automated analysis of coronary lumen and atherosclerotic plaque dimensions in humansCirculation9629442952PubMedGoogle Scholar
  35. 35.
    Bruining, N, Hamers, R, Teo, TJ, Feijter, PJ, Serruys, PW, Roelandt, JR 2004Adjustment method for mechanical Boston scientific corporation 30 MHz intravascular ultrasound catheters connected to a Clearview console. Mechanical 30 MHz IVUS catheter adjustmentInt J Cardiovasc Imaging208391PubMedGoogle Scholar
  36. 36.
    Nishimura, RA, Edwards, WD, Warnes, CA,  et al. 1990Intravascular ultrasound imaging: in vitro validation and pathologic correlationJ Am Coll Cardiol16145154PubMedGoogle Scholar
  37. 37.
    Prati, F, Arbustini, E, Labellarte, A,  et al. 2001Correlation between high frequency intravascular ultrasound and histomorphology in human coronary arteriesHeart85567570PubMedGoogle Scholar
  38. 38.
    Okimoto, T, Imazu, M, Hayashi, Y, Fujiwara, H, Ueda, H, Kohno, N 2002Atherosclerotic plaque characterization by quantitative analysis using intravascular ultrasound: correlation with histological and immunohistochemical findingsCirc J66173177PubMedGoogle Scholar
  39. 39.
    Schartl, M, Bocksch, W, Koschyk, DH,  et al. 2001Use of intravascular ultrasound to compare effects of different strategies of lipid-lowering therapy on plaque volume and composition in patients with coronary artery diseaseCirculation104387392PubMedGoogle Scholar
  40. 40.
    Winter, SA, Heller, I, Hamers, R,  et al. 2003Computer assisted three-dimensional plaque characterization in ultracoronary ultrasound studiesComput Cardiol307376Google Scholar
  41. 41.
    Korte, CL, Sierevogel, MJ, Mastik, F,  et al. 2002Identification of atherosclerotic plaque components with intravascular ultrasound elastography in vivo: a Yucatan pig studyCirculation10516271630PubMedGoogle Scholar
  42. 42.
    Schaar, JA, Korte, CL, Mastik, F,  et al. 2003Characterizing vulnerable plaque features with intravascular elastographyCirculation10826362641PubMedGoogle Scholar
  43. 43.
    Korte, CL, Carlier, SG, Mastik, F,  et al. 2002Morphological and mechanical information of coronary arteries obtained with intravascular elastography; feasibility study in vivoEur Heart J23405413PubMedGoogle Scholar
  44. 44.
    Schaar JA, Mastik F, Regar E, de Korte CL, van der Steen AFW, Serruys PW. Reproducibility of three-dimensional palpography. Eur Heart J 2003; suppl.: 2203.Google Scholar
  45. 45.
    Schroeder, S, Kopp, AF, Baumbach, A,  et al. 2001Noninvasive detection and evaluation of atherosclerotic coronary plaques with multislice computed tomographyJ Am Coll Cardiol3714301435PubMedGoogle Scholar
  46. 46.
    Nieman, K, Cademartiri, F, Lemos, PA, Raaijmakers, R, Pattynama, PM, Feyter, PJ 2002Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomographyCirculation10620512054PubMedGoogle Scholar
  47. 47.
    Nair, A, Kuban, BD, Tuzcu, EM, Schoenhagen, P, Nissen, SE, Vince, DG 2002Coronary plaque classification with intravascular ultrasound radiofrequency data analysisCirculation10622002206PubMedGoogle Scholar
  48. 48.
    Moore, MP, Spencer, T, Salter, DM,  et al. 1998Characterization of coronary atherosclerotic morphology by spectral analysis of radiofrequency signal: in vitro intravascular ultrasound study with histological and radiological validationHeart79459467PubMedGoogle Scholar
  49. 49.
    Nissen, SE, Tuzcu, EM, Schoenhagen, P,  et al. 2004Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trialJAMA29110711080PubMedGoogle Scholar
  50. 50.
    Alpert, JS, Thygesen, K, Antman, E, Bassand, JP 2000Myocardial infarction redefined–a consensus document of The Joint European Society of Cardiology/American College of Cardiology Committee for the redefinition of myocardial infarctionJ Am Coll Cardiol36959969PubMedGoogle Scholar
  51. 51.
    Serruys, PW, Emanuelsson, H, Giessen, W,  et al. 1996Heparin-coated Palmaz-Schatz stents in human coronary arteries. Early outcome of the Benestent-II Pilot StudyCirculation93412422PubMedGoogle Scholar
  52. 52.
    Mintz, GS, Nissen, SE, Anderson, WD,  et al. 2001American College of Cardiology Clinical Expert Consensus Document on standards for acquisition, measurement and reporting of intravascular ultrasound studies (IVUS). A report of the American College of Cardiology Task Force on Clinical Expert Consensus DocumentsJ Am Coll Cardiol3714781492PubMedGoogle Scholar
  53. 53.
    Ward, MR, Pasterkamp, G, Yeung, AC, Borst, C 2000Arterial remodeling. Mechanisms and clinical implicationsCirculation10211861191PubMedGoogle Scholar
  54. 54.
    Birgelen, C, Hartmann, M, Mintz, GS, Baumgart, D, Schmermund, A, Erbel, R 2003Relation between progression and regression of atherosclerotic left main coronary artery disease and serum cholesterol levels as assessed with serial long-term (≥12 months) follow-up intravascular ultrasoundCirculation10827572762PubMedGoogle Scholar
  55. 55.
    Birgelen, C, Hartmann, M, Mintz, GS,  et al. 2004Spectrum of remodeling behavior observed with serial long-term (≥12 months) follow-up intravascular ultrasound studies in left main coronary arteriesAm J Cardiol9311071113PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Carlos A. G. Van. Mieghem
    • 1
  • Nico Bruining
    • 1
  • Johannes A. Schaar
    • 2
  • Eugene McFadden
    • 1
  • Nico Mollet
    • 1
  • Filippo Cademartiri
    • 1
  • Frits Mastik
    • 2
  • Jurgen M. R. Ligthart
    • 1
  • Gaston A. Rodriguez. Granillo
    • 1
  • Marco Valgimigli
    • 1
  • Georgios Sianos
    • 1
  • Willem J. van der. Giessen
    • 1
  • Bianca Backx
    • 4
  • Marie-Angele M. Morel
    • 4
  • Gerrit-Anne Van Es
    • 4
  • Jonathon D. Sawyer
    • 3
  • June Kaplow
    • 3
  • Andrew Zalewski
    • 3
  • Anton F. W. vander. Steen
    • 2
  • Pim de Feyter
    • 1
  • Patrick W. Serruys
    • 1
  1. 1.Erasmus Medical CenterRotterdamThe Netherlands
  2. 2.Interuniversity Cardiology Institute of the NetherlandsUtrechtthe Netherlands
  3. 3.GlaxoSmithKlinePhiladelphiaUSA
  4. 4.CardialysisRottterdamThe Netherlands

Personalised recommendations