Chemistry and Technology of Fuels and Oils

, Volume 55, Issue 4, pp 483–490 | Cite as

Plugging Ability of Ice Crystals in a Low Temperature Coal Rock Fracture

  • Jia MinEmail author
  • Yang Zhaozhong
  • Zhang Yunpeng
  • Li Xiaogang
  • Zhou Nayun

The key to temporary plugging by ice crystals in coalbed methane wells is whether sufficient ice formation plugging strength can be achieved. Ice crystal formation and plugging capacity test equipment was designed to test the plugging capacity of ice crystals in a low temperature coal rock fracture. The experimental results show that the plugging strength is above 20 MPa. The tensile strength of saturated coal rock under freezing conditions was tested by the Brazil disk split method in order to study the mechanism of sealing strength of ice crystals. The results show that the tensile strength of frozen coal increases as the temperature falls beneath 0°C. Both of these results proved that the technology of temporary plugging using ice crystals in coalbed methane wells is feasible and rational.


Temporary plugging by ice plugging capacity tensile strength coalbed methane 



This paper is supported by Open Fund (PLNI208 ) of State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation (Southwest Petroleum University), Fund of Personnel Office of Southwest Petroleum University, and the special fund of China 's central government for the development of local colleges and universities — the project of national first-level discipline inj)il and} as Engineering.


  1. 1.
    The Ministry of Land and Resources Strategic Research Center of Oil and Gas. 2010. The National Oil and Gas Resource Assessment, Beijing, China Land Press.Google Scholar
  2. 2.
    I. D. Palmer, M. J. Mayor, J. L.Spitler et al., J. Petr:Technol., 1993, 45(11): 1072-1080.CrossRefGoogle Scholar
  3. 3.
    I. Palmer, M. Khodaverdian, H. Vaziri et al., “Mechanics of Openhole Cavity Completions in Coalbed Methane Wells,” 1996. 2nd North American Rock Mechanics Symposium. American Rock Mechanics Association.Google Scholar
  4. 4.
    N. Maricic, "Parametric and Predictive Analysis of Horizontal Well Configurations for Coalbed Methane Reservoirs in Appalachian Basin." 2004. West Virginia University, USA. 34-37.Google Scholar
  5. 5.
    S. J. Zarrouk, T. A. Moore, Int. J. Coal Geol., 2009, 77(1): 153-161.CrossRefGoogle Scholar
  6. 6.
    S. G. Snyder, D. W. Jockel, A. W. Lopez, Society of Petroleum Engineers, 2007, 17(19):1-2.Google Scholar
  7. 7.
    B. Lourdes, M. D. Colmenares et al, American Association of Petroleum Geologists, 2007,51-52.Google Scholar
  8. 8.
    Yan Song, Shaobo Liu, Mengjun Zhao et al., Natural Gas Industry, 2011, 31(12):47-53.Google Scholar
  9. 9.
    Lin Dai, “Study on Hydraulic Fracturing Design of Coalbed Methane.” 2012. Yangtze University. 10. Ren Zhanli, Xiao Hui, Liu Li et al., Petr Explor Devel., 2005, 32(1): 43-47.Google Scholar
  10. 10.
    B. W. McDaniel, S. R.Grundmann, W. D.Kendrick et al., “Field Application of Cryogenic Nitrogen as a Hydraulic Fracturing Fluid.” Paper SPE 38623 presented at the 1997 SPE Annual Technical Conference and Exhibition, San Antonio, Texas, Oct. 5-8.Google Scholar
  11. 11.
    R. S. Lestz, L.Wilson, R. S.Taylor et al., J. Can.. Petr.Technol., 2007, 46(12): 68-72.Google Scholar
  12. 12.
    T. Ishida, K. Aoyagi, T. Niwa et al., Geophysical Research Letters, 2012, 39(16).Google Scholar
  13. 13.
    Patent 396029310 (USA).Google Scholar
  14. 14.
    S. R. Grundmann, G. D.Rodvelt, G. A.Dials et al., “Cryogenic Nitrogen as a Hydraulic Fracturing Fluid in the Devonian Shale.” SPE Eastern Regional Meeting. Society of Petroleum Engineers, 1998.Google Scholar
  15. 15.
    Hongfang Xu, “Liquid Nitrogen Gasification Fracturing Technology Applicable to Shale Gas Development.” 2013. Yanshan University.Google Scholar
  16. 16.
    Shaoran Ren, Zhikun Fan, Liang Zhang et al., Chinese J. Rock Mechan. Eng, 2013, (z2):3790-3794.Google Scholar
  17. 17.
    Chengzheng Cai, Gensheng Li, Zhongwei Huang et al., Rock and Soil Mechan., 2014,35(4):965-971.Google Scholar
  18. 18.
    Haidong Wang, “Study on the Mechanism of Enhancing Permeability of High Stressed and Low Permeable Coal Seam in Deep Mining by Pre-Splitting Controlled Blasting Technology.” 2012, Institute of Engineering Mechanism, China Earthquake Administration: 2-3.Google Scholar
  19. 19.
    A. M. A. Mohamed, M. Farzaneh, Cold Regions Sci.Technol., 2011, 68(3): 91-98.CrossRefGoogle Scholar
  20. 20.
    M. Arakawa, N. Maeno, Cold Regions Sci.Technol., 1997, 26(3): 215-229.CrossRefGoogle Scholar
  21. 21.
    K. Aoki, K. Hibiya, T. Yoshida, “Tunneling and Underground Space Technology,” 1990, 5(4): 319-325.Google Scholar
  22. 22.
    J.Kodama, T.Goto, Y.Fujii et al., Int. J. Rock Mechan. Mining Sci., 2013, 62: 1-13.CrossRefGoogle Scholar
  23. 23.
    Y. Inada, K.Yokota, Int. J. Rock Mechan. Mining Sci. & Geomechanics Abstracts, 1984, 21(3), 145-153.CrossRefGoogle Scholar
  24. 24.
    M. K. Hubbert, D. G. Willis, Trans. AIME, 1957, 210(2): 154-160.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jia Min
    • 1
    Email author
  • Yang Zhaozhong
    • 1
  • Zhang Yunpeng
    • 1
  • Li Xiaogang
    • 1
  • Zhou Nayun
    • 1
  1. 1.State Key Laboratory of Oil and Gas Reservoir Geology and ExploitationSouthwest Petroleum UniversityChengduChina

Personalised recommendations