Advertisement

Production of Radiation Cross-Linked Cellulose-Based Polymeric Materials

  • E. U. KozhevnikovaEmail author
  • M. A. Bychenko
  • A. Yu. Trofimov
Article
  • 12 Downloads

The process of radiation grafting of polymeric materials to cellulose in the presence of dyes was studied. It was found that among the tested dyes rhodamine 6G has the best resistance to γ-irradiation. The radiation-grafted copolymer with rhodamine 6G is characterized by a high color stability, which persists even after prolonged Soxhlet extraction with water and hydrocarbons. The tested method of obtaining radiation-grafted materials can be used to obtain biodegradable colored packaging materials.

Keywords

regenerated cellulose radiation grafting radiation resistance 

Notes

The studies were carried out within the framework of the Federal Target Program “Research and Development in the Priority Development Directions of the Scientific and Technical Complex of Russia for 2014–2020” with financial support from the Ministry of Education and Science of the Russian Federation (project 14.577.21.0235, unique identifier PNIER RFMEFI57716X0235).

References

  1. 1.
    Y. J. Oyeniyi and O. A. Itiola, Int. J. Pharm. Pharm. Sci., 4, No. 1, 197–200 (2012).Google Scholar
  2. 2.
    D. Roy, Chem. Soc. Rev., 38, No. 7, 2046–2064 (2009).CrossRefGoogle Scholar
  3. 3.
    R. Kumar, R. K. Sharma, and A. P. Singh, J. Mol. Liq., 232, 62–93 (2017).CrossRefGoogle Scholar
  4. 4.
    J. Yang and J. Li, Carbohyd. Polym., 181, 264–274 (2017).CrossRefGoogle Scholar
  5. 5.
    H. Kargarzadeh, M. Mariano, J. Huang, et al., Polymer, 132, 368–393 (2017).CrossRefGoogle Scholar
  6. 6.
    W. Czaja, A. Krystynowicz, S. Bielecki, et al., Biomaterials, 27, No. 2, 145–151 (2006).CrossRefGoogle Scholar
  7. 7.
    M. Cavicchioli, C. T. Corso, F. Coelho, et al., Pharm. Pharm. Sci., 4, No. 7 (2015).Google Scholar
  8. 8.
    J. Tang, L. Bao, X. Li, et al., J. Mater. Chem. B, 3, No. 43, 8537–8547 (2015).CrossRefGoogle Scholar
  9. 9.
    M. Zaborowska, A. Bodin, H. Bäckdahl, et al., Acta Biomater., 6, No. 7, 82540–2547 (2010).CrossRefGoogle Scholar
  10. 10.
    H. Orelma, I. Filpponen, L. S. Johansson, et al., Biointerphases, 7, No. 1, 61 (2012).CrossRefGoogle Scholar
  11. 11.
    M. T. Bashir, A. Salmiaton, M. Nourouzi, et al., Asian. J. of Microbial. Biotech. Env. Sc., 17, No. 3, 533–542 (2015).Google Scholar
  12. 12.
    C. Wong, T. McGowan, S. G Bajwa, et al., BioResources, 11, No. 3, 6452–6463 (2016).CrossRefGoogle Scholar
  13. 13.
    K Johari, N. Saman, S. T. Song, et al., Int. Biodeter. Biodegr., 109, 45–52 (2016).CrossRefGoogle Scholar
  14. 14.
    N. Saman, K Johari, S. T. Song, et al., Separ. Sci. Technol., 50, No. 7, 937–946 (2015).CrossRefGoogle Scholar
  15. 15.
    J. R. Capadona, K. Shanmuganathan, S. Trittschuh, et al., Biomacromolecules, 10, No. 4, 712–716 (2009).CrossRefGoogle Scholar
  16. 16.
    B. Parambath Kanoth, M. Claudino, M. Johansson, et al., ACS Appl. Mater. Inter, 7, No. 30, 16303–16310 (2015).CrossRefGoogle Scholar
  17. 17.
    E. Trovatti, A. J. Carvalho, S. J. Ribeiro, et al., Biomacromolecules, 14, No. 8, 2667–2674 (2013).CrossRefGoogle Scholar
  18. 18.
    L. Tang and C. Wader, ACS Appl. Mater. Inter., 2, No. 4, 1073–1080 (2010).CrossRefGoogle Scholar
  19. 19.
    C. Gao, Y. Wan, F. He, et al., Adv. Polym. Technol., 30, No. 4, 249–256 (2011).CrossRefGoogle Scholar
  20. 20.
    M. Zaman, H. Liu, H. Xiao, et al., Carbohyd. Polym., 91, No. 2, 560–567 (2013).CrossRefGoogle Scholar
  21. 21.
    M. S. Kotelev, Z. V. Bobyleva, I. A. Tiunov, et al., Chem. Tech. Fuels Oil., 53, No. 5, 722–726 (2017).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • E. U. Kozhevnikova
    • 1
    Email author
  • M. A. Bychenko
    • 1
  • A. Yu. Trofimov
    • 1
  1. 1.I. M. Gubkin Russian State University of Oil and GasMoscowRussia

Personalised recommendations