Advertisement

Effect of the Phase State of the Solvent on Solvent Deactivation of Tar by n-Pentane

  • R. N. Magomedov
  • A. V. PripakhailoEmail author
  • T. A. Maryutina
Article
  • 14 Downloads

Fuel development for solvent deasphalting (SDA), by means of which it is possible to obtain high yields of deasphalted oil (DAO) with acceptable quality for subsequent refining in catalytic cracking processes and hydrocracking in particular, is nowadays becoming increasingly important. In this paper, an experimental study of the SDA of tar (vacuum residue) with n-pentane at various extraction temperatures and pressures was undertaken, and this made it possible to determine the effect of the phase state of the solvent on the yield, composition, and properties of the separation products,. It was shown that transfer of pentane from the liquid phase state to the region of a subcritical and then supercritical fluid (SCF) increases the solubility of the tar components and the yield of the DAO for fixed values of the solvent density. Despite some decrease in the quality of the DAO in the case of supercritical extraction at temperatures close to the critical temperature of the solvent (220°C), the phase state of the pentane has little effect on the metal content of the products, the carbon residue content of the DAO, and the softening point of the asphalt for the given yields.

Key words

solvent deasphalting asphaltenes deasphalted oil asphalt tar n-pentane supercritical fluids supercritical fluid extraction 

Notes

The work was conducted with financial support from the Ministry of Education and Science of the Russian Federation, contract No. 03.G25.31.0238 of April 28, 2017, in the realization of a complex project of creation of highly technological production “Development and Creation of Solvent Technology of Refining of Heavy Oil Feedstock”, NIOKTR, the results of which are presented in the publication, Moscow Physicotechnical Institute, which is the leading organ of NIOKTR, contract No. 03.G25.31.0238 of April 28, 2017.

References

  1. 1.
    E. J. Houde, M. J. McGrath, When solvent deasphalting is the most appropriate technology for upgrading residue. In: IDTC Conference, London, England, February 2006, 11 pp.Google Scholar
  2. 2.
    R. Iqbal, A. Khan, O. Eng, R. Floyd, PTQ, Q 2, 1–5 (2008).Google Scholar
  3. 3.
    M. Motaghi, K Shree, S. Krishnamurthy, Hydrocarbon Processing, 2010, February, pp. 35-38.Google Scholar
  4. 4.
    F. M. Sultanov, I. R. Khairudinov, É. G. Telyashev, et al., Neftepererabotka i Neftekhimiya, No. 6, 25–28 (2008).Google Scholar
  5. 5.
    K G. Zinganshin, A. V. Myl’tsyn, A. A. Osintsev, et al., Bashkir Khimicheskii Zhurnal, 20, No. 3, 36-40 (2013).Google Scholar
  6. 6.
    S. Zhao, C. Xu, X. W. Sun, K. H. Chung, Y. Xiang, Oil & Gas Journal, 108 (12), 52-58 (2010).Google Scholar
  7. 7.
    S. Zhao, R. Wang, S. Lin, Petroleum Science & Technology, 24. 297-318 (2006).CrossRefGoogle Scholar
  8. 8.
    M. Perrut, Ind. Eng. Chem. Res., 39, 4531-4535 (2000).CrossRefGoogle Scholar
  9. 9.
    K. Zosel, Angew. Chem. Int. Ed. Engl., 17, 702-709 (1978).CrossRefGoogle Scholar
  10. 10.
    C. A. Irani, E. W. Funk, Recent Developments in Separation Science, CRC Press, West Palm Beach, Florida (1977), V. III, Part A, p. 171.Google Scholar
  11. 11.
    L. Lodi, V. O. Cardenas Concha, R. A. Souza, et al., Petroleum Science and Technology, 32, 2659-2665 (2014).CrossRefGoogle Scholar
  12. 12.
    J. Rincon, P. Canizares, M. T. Garcia, et al., Ind. Eng. Chem. Res., 42, 4867=4873 (2003).Google Scholar
  13. 13.
    J. Rincon, P. Canizares, M. T. Garcia, J. of Supercritical Fluids, 39, 315-322 (2007).CrossRefGoogle Scholar
  14. 14.
    R. N. Cavalcanti, M. A. A. Meireles, in: J. Pawliszyn (Ed.), Comprehensive Sampling and Sample Preparation, Elsevier (2012), Vol. 2, pp. 117-133.Google Scholar
  15. 15.
    Thermophysical Properties of Pentane, NIST Chemistry WebBook, SRD 69, URL: https://webbook.nist.gov/cgi/fluid.cgi?ID=C109660&Action=Page.
  16. 16.
    H. Baek, C. H. Kim, S. H. Kim, et al., Energy Eng. J., 2(1), 68–74 (1993).Google Scholar
  17. 17.
    M. D. Deo, J. Hwang, F. V. Hanson, Fuel, 71, 1519-1526 (1992).CrossRefGoogle Scholar
  18. 18.
    M. S. Kim, K. S. Yang, J. S. Hwang, Petroleum Science and Technology, 15 (9&10). 921-942 (1997).CrossRefGoogle Scholar
  19. 19.
    G. Brons, M. Yu. Jimmy, Energy Fuels, 9, 641-647 (1995).CrossRefGoogle Scholar
  20. 20.
    I. Honjo, K. Ohta, K. Kamiya, et al., Sekiyu Gakkaishi, 32, No. 4, 199-205 (1989).CrossRefGoogle Scholar
  21. 21.
    M. Fan, X. Sun, Z. Xu, et al., Energy Fuels, 25, 3060-3067 (2011).CrossRefGoogle Scholar
  22. 22.
    C. Leyva, J. Ancheyta, C. Berrueco, et al., Fuel Processing Technology, 106, 734-738 (2013).CrossRefGoogle Scholar
  23. 23.
    F. M. Sultanov, I. R. Khairudinov, T. B. Shakirov, et al., Mir Nefteproduktov, No. 4, 9–11 (2016).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • R. N. Magomedov
    • 1
  • A. V. Pripakhailo
    • 1
    Email author
  • T. A. Maryutina
    • 1
  1. 1.Moscow Physicotechnical Institute (State University)DolgoprudnyiRussia

Personalised recommendations